Vol. 132
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-10-05
Scattering of an Arbitrarily Oriented Dipole Field by a Circular Disk with Surface Impedance
By
Progress In Electromagnetics Research, Vol. 132, 403-424, 2012
Abstract
The scattering of an arbitrarily oriented dipole field by a circular disk with surface impedance is investigated by using the method of Kobayashi Potential (KP method). The dual integral equations (DIE) are produced during formulation of the problem. The solution of the DIEs is constructed in terms of set of functions which satisfy the boundary conditions as well as required edge conditions. At this stage, we applied the discontinuous properties of Weber Schafheitlins integral and vector Hankel transform. After applying the projection, the resulting expressions are reduced to the matrix equations for the expansion coefficients. The matrix elements are given in terms of the infinite integrals. The far field patterns for the scattered wave are computed for different incident angles, disk sizes and surface impedances for ρ−, Φ− and z−directed dipole field excitation. To validate the results we have obtained the results based on the physical optics approximation and their comparison shows that they quite reasonably match.
Citation
Allah Ditta Ulfat Jafri, Qaisar Naqvi, Aqeel Abbas Syed, and Kohei Hongo, "Scattering of an Arbitrarily Oriented Dipole Field by a Circular Disk with Surface Impedance," Progress In Electromagnetics Research, Vol. 132, 403-424, 2012.
doi:10.2528/PIER12060508
References

1. Senior, T. B. A., "Impedance boundary conditions for imperfectly conducting surfaces," Appl. Sci. Res., Vol. 8, 418-436, 1960.
doi:10.1007/BF02920074

2. Shchukin, A. N., Propagation of Radio Waves, Svyazizdat, Moscow, Russia, 1940.

3. Leontovich, M. A., "Methods of solution for problems of electromagnetic waves propagation along the Earth surface," Bull. Acad. Sci. USSR, Phys. Ser., Vol. 8, No. 1, 1622, 1944 (in Russian).

4. Pelosi, G. and P. Y. Ufimtsev, "The impedance-boundary condition," IEEE Antennas Propag. Mag., Vol. 38, No. 1, 3135, Feb. 1996.
doi:10.1109/74.491289

5. Lindell, I. V. and A. H. Sihvola, "Realization of impedance boundary," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 12, 3669-3676, Dec. 2006.
doi:10.1109/TAP.2006.886535

6. Miller, R. F., "The diffraction of an electromagnetic wave by a circular aperture," Proc. IEE, Vol. 104C, 87-95, 1957.

7. Miller, R. F., "The diffraction of an electromagnetic wave by a circular aperture," Proc. IEE, Vol. 104C, 87-95, 1957.

8. Lancellotti, V., B. P. de Hon, and A. G. Tijhuis, "Scattering from large 3-D piecewise homogeneous bodies through linear embedding via Green's operators and Arnoldi basis functions ," Progress In Electromagnetics Research, Vol. 103, 305-322, 2010.
doi:10.2528/PIER10032915

9. Shore, R. A. and A. D. Yaghjian, "Comparison of high frequency scattering determined from po fields enhanced with alternative ILDCs ," IEEE Transactions on Antennas and Propagation, Vol. 52, 336-341, 2004.
doi:10.1109/TAP.2003.822452

10. Keller, J. B., "Geometrical theory of diffraction," J. Opt. Soc. Amer., Vol. 52, No. 2, 116-130, Feb. 1962.
doi:10.1364/JOSA.52.000116

11. Moschovitis, C. G., H. Anastassiu, and P. V. Frangos, "Scattering of electromagnetic waves from a rectangular plate using an extended stationary phase method based on Fresnel functions (SPM-F)," Progress In Electromagnetics Research, Vol. 107, 63-99, 2010.
doi:10.2528/PIER10040104

12. Li, L. W., P. S. Kooi, Y. L. Qiu, T. S. Yeo, and M. S. Leong, "Analysis of electromagnetic scattering of conducting circular disk using a hybrid method," Progress In Electromagnetics Research, Vol. 20, 101-123, 1998.
doi:10.2528/PIER97111200

13. Bouwkamp, C. J., "On the diffraction of electromagnetic wave by circular disks and holes," Philips Res. Rep., Vol. 5, 401522, 1950.

14. Flammer, C., "The vector wave function solution of the diffraction of electromagnetic waves by circular discs and apertures --- II, The diffraction problems," J. Appl. Phys., Vol. 24, 1224-1231, 1953.
doi:10.1063/1.1721475

15. Bjrkberg, J. and G. Kristensson, "Electromagnetic scattering by a perfectly conducting elliptic disk," Can. J. Phys., Vol. 65, 723-734, 1987.
doi:10.1139/p87-106

16. Kristensson, G., "The current distribution on a circular disc," Can. J. Phys., Vol. 63, 507-516, 1985.
doi:10.1139/p85-080

17. Kristensson, G. and P. C. Waterman, "The T matrix for acoustic and electromagnetic scattering by circular disks," J. Acoust. Soc. Am., Vol. 72, No. 5, 1612-1625, Nov. 1982.
doi:10.1121/1.388497

18. Kristensson, G., "Natural frequencies of circular disks," IEEE Transactions on Antennas and Propagation, Vol. 32, No. 5, May 1984.
doi:10.1109/TAP.1984.1143356

19. Balaban, M. V., R. Sauleau, T. M. Benson, and A. I. Nosich, "Dual integral equations technique in electromagnetic wave scattering by a thin disk," Progress In Electromagnetics Research B, Vol. 16, 107-126, 2009.
doi:10.2528/PIERB09050701

20. Nomura, Y. and S. Katsura, "Diffraction of electric wave by circular plate and circular hole," Sci. Rep., Inst., Electr. Comm., Vol. 10, 1-26, Tohoku University, 1958.

21. Hongo, K. and Q. A. Naqvi, "Diffraction of electromagnetic wave by disk and circular hole in a perfectly conducting plane," Progress In Electromagnetic Research, Vol. 68, 113-150, 2007.
doi:10.2528/PIER06073102

22. Inawashiro, S., "Diffraction of electromagnetic waves from an electric dipole by a conducting circular disk," J. Phys. Soc. Japan, Vol. 18, 273-287, 1963.

23. Hongo, K., A. D. U. Jafri, and Q. A. Naqvi, "Scattering of electromagnetic spherical wave by a perfectly conducting disk," Progress In Electromagnetics Research, Vol. 129, 315-343, 2012.

24. Jafri, A. D. U., Q. A. Naqvi, and K. Hongo, "Scattering of electromagnetic plane wave by a circular disk with surface impedance," Progress In Electromagnetics Research, Vol. 127, 501-522, 2012.
doi:10.2528/PIER12030501

25. Sebak, A. and L. Shafai, "Scattering from arbitrarily-shaped objects with impedance boundary conditions," IEE Proceedings H, Vol. 136, Part H, No. 5, Oct. 1989.

26. Bowman, J. J., T. B. A. Senior, and P. L. E. Uslenghi, Electromagnetic and Acoustic Scattering from Simple Shapes, North-Holland Publication Co., Amsterdam, 1969.

27. Balanis, C. A., Antenna Theory Analysis and Design, John Wiley & Sons, 1982.

28. Harrington, R. F., Field Computation by Moment Methods, Krieger Publication Co., Florida, 1968.

29. Kobayashi, I., "Darstellung eines potentials in zylindrical koordinaten, das sich auf einer ebene unterwirft," Science Reports of the Thohoku Imperifal Unversity, Ser. I, Vol. XX, No. 2, 197-212, 1931.

30. Sneddon, I. N., Mixed Boundary Value Problems in Potential Theory, North-Hollnd Publition Co., 1966.

31. Chew, W. C. and J. A. Kong, "Resonance of non-axial symmetric modes in circular microstrip disk antenna," J. Math. Phys., Vol. 21, No. 3, 2590-2598, 1980.
doi:10.1063/1.524366

32. Ding, D.-Z. and R.-S. Chen, "Electromagnetic scattering by conducting bor coated with chiral media above a lossy half-space," Progress In Electromagnetics Research, Vol. 104, 385-401, 2010.
doi:10.2528/PIER10021004

33. Ji, W.-J. and C.-M. Tong, "Bistatic scattering from two-dimensional dielectric ocean rough surface with a PEC object partially embedded by using the g-smcg method," Progress In Electromagnetics Research, Vol. 105, 119-139, 2010.
doi:10.2528/PIER10041101

34. Watson, G. N., A Treatise on the Theory of Bessel Functions, Cambridge at the University Press, 1944.

35. Watson, G. N., A Treatise on the Theory of Bessel Functions, Cambridge at the University Press, 1944.

36. Magunus, W., F. Oberhettinger, and R. P. Soni, Formulas and Theorems for the Spherical Functions of Mathematical Physics, Springer Verlag, 1966.

37. Gradshteyn, I. S. and I. W. Ryzhik, Table of Integrals, Series and Products, Academic Press Inc., 1965.

38. Braver, I., P. Fridberg, K. Garb, and I. Yakover, "The behavior of the electromagnetic field near the edge of a resistive half-plane," IEEE Transactions on Antennas and Propagation, Vol. 36, 1760-1768, 1988.
doi:10.1109/8.14398

39. Meixner, J., The behavior of electromagnetic fields at edges, Vol. 20, No. 4, 442-446, IEEE Transactions on Antennas and Propagation, Jul. 1972.

40. Hurd, R. A., "The edge condition in electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 24, No. 1, 70-73, Jan. 1976.
doi:10.1109/TAP.1976.1141290

41. Illahi, A. and Q. A. Naqvi, "Scattering of an arbitrarily oriented dipole field by an infinite and finite length PEMC circular cylinder cylinder," Central European Journal of Physics, 829-853, 2009.
doi:10.2478/s11534-008-0162-6

42. Sarabandi, K., M. D. Casciato, and I.-S. Koh, "Efficient calculation of the fields of a dipole radiating above an impedance surface," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 9, 1222-1235, Sep. 2002.