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Abstract—The scattering of an arbitrarily oriented dipole field by
a circular disk with surface impedance is investigated by using the
method of Kobayashi Potential (KP method). The dual integral
equations (DIE) are produced during formulation of the problem. The
solution of the DIEs is constructed in terms of set of functions which
satisfy the boundary conditions as well as required edge conditions.
At this stage, we applied the discontinuous properties of Weber
Schafheitlins integral and vector Hankel transform. After applying
the projection, the resulting expressions are reduced to the matrix
equations for the expansion coefficients. The matrix elements are given
in terms of the infinite integrals. The far field patterns for the scattered
wave are computed for different incident angles, disk sizes and surface
impedances for p-, ¢- and z-directed dipole field excitation. To validate
the results we have obtained the results based on the physical optics
approximation and their comparison shows that they quite reasonably
match.

1. INTRODUCTION

The circular disk being a classical scatterer in the field of
electromagnetics has received much attention for a long time.
The solution of electromagnetic scattering problems satisfies the
Maxwell equations and boundary conditions. The surfaces with
large conductivity can be treated with surface impedance boundary
condition. The use of surface impedance boundary condition (SIBC)
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in such cases eases to solve [1] such problems. Shchukin [2] and
Leontovich [3] introduced the idea of SIBC in 1940s [4]. Lindell and
Sihvola [5] proposed the possible realization of such artificial surfaces
which obey SIBC. In impedance boundary condition, the tangential
components of electric and magnetic field are related through a relation

E- (AE)A=ZAxH

where the Z; is the impedance of surface and 7 the unit normal to the
surface.

A variety of methods have been applied to investigate the
disk problem [6-34]. In most of the earlier work, disk is taken
perfectly conducting and plane wave as source of excitation. However,
Inawashiro [22] and Hongo et al. [23] have excited the perfectly
conducting disk with dipole field. Jafri et al. [24] studied the scattering
of impedance disk using KP method and Sebak and Shafai [25]
investigated the arbitrarily shaped objects particulary impedance
sphere and finite circular cylinder developing the integral equation and
then applying the method of moments (MoM) [28] but both used the
plane wave as source of excitation. In this paper, we have investigated
the scattering of the field produced by an arbitrarily oriented dipole
from circular disk with surface impedance first time by applying the
KP method. This study is actually the extension of the work by Jafri
et al. [24]. The KP method [29, 30] was initially developed to solve the
potential problems associated with perfectly conducting disk and strip,
but later successfully applied to perfectly conducting circular disk and
circular disk with surface impedance [20-24] for time harmonic field.

The formulation of the problem starts with the defining the
longitudinal components of the vector potentials of electric and
magnetic types to express the scattered field in the form of Fourier-
Hankel transform. The imposition of the required boundary conditions
yields the dual integral equations (DIE). The equations may be
written in the form of the vector Hankel transform given by Chew
and Kong [31]. The DIEs solution is expanded in terms of a set
of the functions with expansion coefficients. These functions are
constructed by keeping in view the discontinuous properties of the
Weber-Schafheitlin’s integrals [35-37] and it is readily shown that
these functions satisfy the required edge conditions [38-40] as well as
boundary conditions. At this stage, we apply the projection using
Jacobi polynomials as basis of the functional space. Thus the problem
is reduced to the matrix equations for the expansion coefficient. The
matrix equations are solved to determine the expansion coefficients.
Numerical results for the far field patterns are obtained and compared
with those obtained through physical optics method. The comparison
shows that results match fairly well.
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2. EXPRESSIONS FOR INCIDENT WAVE

The geometry of the problem under investigation is shown in Fig. 1.
The dipole is located at (po, o, 20) and “a” is the radius of the
disk. (p,¢,2) are the coordinates of the observation point. The
electromagnetic field due to the dipole is derived in [23] and [41] and
we just write the tangential components of the electromagnetic field
for the disk problem.

E ©° £ Bl
] = i pem -l cosme + | 5™ | sinme
gem ) cosme + | 25 | sinme (1)
<H¢c,m> H¢>s,m

The expressions for the Fourier components defined in (1) at z = 0 are
given as follows.

+ig

2.1. p-directed Dipole Field

B 1 /OO exp(—jhazoa)
pem 2rka? J, w2 — o2
[hZJ,’n(ap()a)J;n(apa)—kﬁ m Jm(apOG)me(apa)}ada (2a)
AP0q QPq
E 1 /°° exp(—jhazoa)
$sm 2mKa? 0 K2 — a2

[hZJ,/n(ozpod) ﬂJm(apa) +K2 o
ap «

a Oa

Infapua) e ada (20

Figure 1. Scattering of an arbitrarily oriented dipole field by a circular
disk with surface impedance.
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, Yo [, m m /
H . =——" —
ps,m 271'(12/0 [Jm(apa)apoajm(ap‘)a)"’a aJm(apa)Jm(QPOQ):|
exp(—jhazoa)xda (2¢)
; Yo [ m m , ,
H; ) Im a)——JIm a J, a)d, a
pem =53 /O [a o Tmlepa) = Tm{@poa) + T (@pa) (o )]
exp(—jhqzoq)da (2d)

2.2. ¢-directed Dipole Field

i 1 / > exp(—jhaz0a)
E smo
pSs 2rka? J, K2 — 2
[h2mJ @pod) T, (@pa) + 52Ty (0P00) —— T 0p )}ada (3a)
aapoa m q, m Q, m qQ, apa m Q,
3 1 /OO eXp(_jhaZOa)
Egen =~ 2
’ 2rka 0 K2 — 2
2 7/ / 2 m m
K2, poa) I, (0pa) +hy —— Im (@pog, Im (o a}ada 3b
T 0 T+ e T Tnepada (30
j Yo (1], / m m
H; = - a a m o) Im a
pe,m 27TCL2/0 |:Jm(ap )Jm(OZPO )+ OéPaJ (ap )apOaJ (apo ):|
exp(—jhazoq)ada (4a)
. Y[) 0 m / m !
H; ~5_ 9 7Jm a J, a Jm a J, a
bsm =5 /0 [a . (@pa)Jm(@poa) + — . (apoa) I (cp )}
exp(—jhazoq)ada (4b)
2.3. z-directed Dipole Field
Epem = o ina? /0 Jm (0poa) T, (apa) exp(—jhazoa) o dox (5a)
i 1 * m ) 2
Elym = ~omind? ; Jm(apOQ)apaJm(apa)exp(—jhaz(]a)a da (5Db)
S (! > 1 m - 2
Hps’m_27rja2/0 mJM(O‘pOa)aipaJm(O‘Pa)eXp(_JhaZOa)a da(6a)
1 _ Yb o 1 / . 2
=g | s n(apua) J@pesp(—ihozan)oda. (6)

where the variables and parameters used are normalized by the radius
of the disk as

Pa =

20

p P B
- ) Z20a =
a a

z
y POa = —"5 Ra=
a a

he = ha, k=ka, h=Vkrk?—a?
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10
number. Jp,(z) and J),(z) are the Bessel function of the first kind and
its derivative with respect to the argument.

Yo = /2 is the intrinsic admittance of free space and k the wave

3. THE EXPRESSIONS FOR SCATTERED FIELD

Here we discuss how the KP method is applied for predicting the field
scattered by an impedance disk.

3.1. Spectrum Functions of the Fields on the Disk

The magnetic and electric vector potential corresponding to the
scattered field are defined in terms of unknown weighting functions

f(&) and g(§) which are to be determined so that they satisfy the
required boundary conditions.

AT (.6, = MOGHYOZ / E)cosmor+ i (€)sinm)

m(pag) eXp[:F §2_’12 Za]gildg (73‘)

I?Wm¢&%—qw§:1;[%%@M%Ww+ﬁ%@ﬁmmd
m=0

Jm(Paf) eXp[:F €2_"12 Za]gildg (7b)

where the upper and lower signs refer to the region z > 0 and z < 0,
respectively.
The boundary conditions for this problem are stated as

(1) The tangential components of electric and magnetic fields are
continuous on the plane z = 0 for p, > 1.

2) Ef = -ZfHJ, E, = Z;H,, B} = ZfH}, E; = —Z H, for
pa < 1 where Z} and Z are assumed to be surface impedances
of upper and lower surfaces respectively.

The first boundary condition gives
|:E2§m( Pa) — EZcm( )]
S S—
(o¢] 2 — —1
= [t VS [f’”” ,”fm( I8 ]§d£:0
0 [95m(8) — Fam (&) €7

N oo — Ec,m(f) — a
= /0 [H™(£pa)] [E:m(g)] €E =0,  pa=1 (8a)
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g

qbcm

= [ e

¢>cm

yvf‘i7?[gm *ﬂﬁa@ﬂ£_1§d£_0
(G (€) — o ()] €7

—‘Aw[H+@a»][P“"Eﬂsd5—o, pa> 1 (8D)
[Héim( Pa) = Hpem(pa)
Hi! o (pa) — Hyg (p )]

oo 2 _ g2
- w(@m! =27 (€) T 6] () F&ZO

SEAGEN G I
:/Ow[H—@pa)][ - f)]gdgzo, pa>1 (8¢c)
[Hs+( pa) — H5

m(

m(§)
pS,m psm( a):|

Hy! o (pa) = H (Pa)

¢cm
oo 52 — K2 N;_m 5 +~s_m § 55)_1
:%A[m@M[ —4£ézééﬂi ]%:0

¢cm

Y Hps.m(©)] ¢ e —
—A[H@mﬂém@k&—a pe> 1 (s)
where the kernel matrices [HT (£p,)] and [H™ (£p,)] are given by
[ Tml€pa)  EgTm(€pa)
[Hi(gpa)] = [iggajm(fpa) T (€pa) ] (9)

Equation (8) is one set of DIEs, and the solution of these equations
must satisfy the Maxwell equations and edge conditions. The solution
of these DIEs is expanded in terms of such functions with expansion
coeflicients by taking into account the discontinuous properties of the
Weber-Schafheitlin’s integrals and then unknown weighting functions
are derived in terms of these functions. This has been done in [24] and
we are here just writing the result.

Tt 1 E = E
fcm(g) - 2 j 52*/{2 Z Amn mn anrq—%n(f)]

203 (Ol =€) + DT (©)] € (10a)
n=0
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T+ — 1 E == DE F+

2205 [t Zh(6) + Bﬁnrmn@)]]f (10b)
n=0

~+ _ 1 AH == BH FJr
iZ [CrinZan(€) + Dl ()] | € (10c)

— Ll kZy H o H p+

= = C D;..I
3 [-AF >+—Bﬁgrmn@n]§ (0a)
In the above equat1ons the functions Z% (£) and Tt (€) are defined

as
Erin(g) = [Jm+2n(§) + Jm+2n+2(€)] 5717
I5,(8) = [Tmr2n1(€) £ Tmyanss(§)] €72

E.H E.H . .
and Ann ~ Dy are expansion coefficients.
The second boundary condition yields

L (p0)] HYE (0]
pcm _ + pc,m\Faj |
=FZ =0,
Boen)] =5 [ ) e
Bt m(pa)] [Hyt 1 (pa)]
psmMAFA) ) gt ¢s,m\I’a =0, <1
Eirm(pa)] = 77 [HE ()] T P
t— . t—
Efgm(ioa) S H?S,m(l)a) -0,
_Ed)s,m(pa)_ _Hps,m(pa)_ (llb)
- Z e Z
ggm(Pa) =477 H%im(l’a) =0, pa<1
Ed)c,m(pa)_ _Hpc,m(pa)_
where
Hyzn(pa) | [Hpzm(pa) . H,icm(p)
(11c)




410 Jafri et al.

_Ef):ctm(p )_ _ E;étm( )_+ E;cm( a)-
B (pa)] B0 | Bl (pa)|
(11d)

Ef)im( pa)| Eﬁim( )_+ Eps m(pa)
t =
_E¢C,m(pa)_ _E(‘qu(pa)_ _Eéﬁgm(p )_

2. Derivation of the Expansion Coefficients

In the Equation (11), we substitute the E** E? and H**, H' and
project the resulting equations into the functional space with elements
P,

—m)2 B o F(m +n+ 1) Jm+2n+1(£) m

v m(EVr) = ;2(m+2n+1)1“(m+1)1“(n+1) g
v Dt DI@+1) o [

e /0 Ton(EV/E) o211 (€)dE

The normalized surface 1mpedances of upper and lower surfaces are

taken equal, i.e., (4 = 5 = (, so that the resulting equations are
simplified. After some mampulatlon these equations reduce to matrix
equations of expansion coefficients. The matrix equations for expansion

coefficients (AZ ' BE CIH DI Y are

=0 (12a)
Z [ mn T(r?pln + Bfm 1(7"20p27)1} = HT(T%,);D’
n=0
S [ol 2850 + i 2182 — m,
" (12b)
S [ol ZE0 + i 2122] — 1
n=0
1 1 2 1
Z AEZ) = 1Y, Z DOnZO( HO( )
(12¢)

m=1,23,...; p=0,1,2,3,...;
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The matrix equations for expansion coefficients (A, BZ CE DI

mn? mn? mn?

are

o0
>[4, Z40 - B1, 23] - K,
n=0

- (13a)
n=0

o

S [CE. 20+ DELZ2)] = KD,

n=0

~ (13b)
> |CE 250 + DELZED] = K2,

n=0

c- L) _ /) S (12) _ (2)

(1,1 (2 1,2 2
Z Ag%ZOpyn =Ky, Z D(]JENZOWL = K,
n=0 n=0 (136)
m=1,2,3,...; p=20,1,2,3,...

and Hy,p ~ H},, and Ky, ~ K, , are defined below. The elements

280~ 732 and 2,55 ~ 7522 of the Equations (12) and (13) are
same as in [24], so we are skipping their definitions.

3.2.1. p-directed Dipole
g _ S [T

2m (o) + 1) T yopi1 ()62 2 Tn(€poa)

§P0a

(" Tmt2p(§) — (o + Q)Jm+2p+2(€))ﬁ_lJﬁn@POa)] exp(—jhaz0a)§dE

(14a)

@__¢ [7
Hm’p:27ra2 0

(O Ton-r2p(€) — (0 +2) Tonszpa(€)) €

Jm a
€0n (£poa)

+2m(azl + I)Jm+2p+1<£)§_2j7ln<fp0a)] exp(_.jhaZOzz)gdé: (14b)
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JzAO .

m?p_

/ exp(_jhaz()a)

N 2
2mra“ Jo

V "32 - €2Jq,n(£p0a)(a;1<]m+2p(£) - (a;n + Q)Jm+2p+2(€))§_l

m

Mmtfm(m)zm(a? + 1) T ap 1 (§)§77 | €d€
Oa -

(14c)
H= s / OOGXP<—JhaZOa>[ngmzm(a%n

o 2
2mra* J

Imtopt1 ()2 + KQWWI;*_@Jm@POa)(apmeHp(f)

—(OZ;T + Q)Jm+2p+2(§))£_1] gd‘f (14d)

3.2.2. ¢-directed Dipole

1 (o)
K / exp(—jhaz0a) [ K2 — a2
0

m7p

2mKra?
m

apo Im(apoa) (o) Imsap(@) = (" + Q)Jm+2p+2(a))0‘71

IQQ

+22J;n(apoa)2m(ozzl+1)Jm+2p+1(a)a2] ada (15a)
K2—a

@ _ L [T K
Km7p:W/0 eXp(—jhaZ[)a) m

Tin(0p00) (O T 2p(0) = (031 +2)ons2ps2(0) )™

+vVK2—o? m

QP0a

Im(apoa)2m(ay’ + 1) mt2pt1 (oz)oz_2]ozda(15b)

, C o m 3
K"g};: 2ma? J, J;n(a,OOa)2m(O[p + 1) Jmt2pt1 (@) 2

m m _
+04,00 Jm(aPOa)(O‘p Jmrap(a) — (O‘;n + 2)Jmt2pr2(a))a 1]

exp(—jhazoq)ada (15c¢)
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C o0

-1

[J;n<ap0a><am+2p<a> — (@ 4 2) Ty apa(a))a

m —
+
A P0a

exp(—jhazoq)ada (15d)

Jm(C)‘p0f1)27n(0‘;;I + 1) Jmt2pr1 (@)

3.2.8. z-directed Dipole

1) _ J > 1 m
e = e

—(apm+2)Jm+2p+2(a))a*1 exp(—jhazoa)0*da (16a)

. oo
@ __J 1
Hm,p = 27ra2/0 /—/{2—(}2 Jm(apOa)

2m(ay’ + D) Jms2ps1(@)a™? exp(—jhazoq)a’da (16b)

o0

B¢ Im(@poa) (0’ Jm+op(cr)

P T 9rea? 0
—(a + 2) Jms2pra(@))a”" exp(—jhazoa)a’da (16¢)
S x
H,(Q) — _L J 2
m,p ka2 0 m(ap()a) m

(o' + 1) Jims2pr1 (@) exp(—jhazoa) 0 do (16d)

3.3. Far Field Expression

The far field expressions of A and F? are obtained by applying the
stationary phase method of integration. The expressions given in (7)
can be written in the form

I = /Oooﬁ(§)Jm(paf) exp {—\/52 — K2 za] e

Application of the standard process of the method to the above integral
gives the result in the form given by

(17)

m+1 exp(—jkR) ~ . cosf
Int = exp (] 5 7r> p(ké )P(chmﬁ) 0
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If we apply this formula to the vector potentials given in (7), we get

A(r) = ppa2Ys exp( jk:R) 1
sin 6
AE J2n+2(l<d sin 0) _ ZycosoDI Jon+3(ksin )
~ (ksinf) (K sin6)?

;i Z{ AE = (ksinf) — BTE,mF;tm(/{siHH)]

+Zycos [CH =) (ksind) + DE T

L (R 5in 6)] cos me

+Zy cos b [— Al =t (ksin@) 4+ B T~ (ksind)]

mn=—mn mn— mn

[an:;m(n sinf) + Dfmffm(m sin 9)] sin mgb}} (18a)
Fo(r) = exp(—jkR) 1
A Y

(ksinf) (ksin 0)?2

{ ZJ [ZOAH Pna(nsing) o opp JQn+3<ffSln9>]

1 ] e H —— . H .
EPN + Z_:O{Z o [AH = (ksin6) — BE T, (sin6)]
—cosf [CE =} (ksing) + DL, T, (ksin6)] cosmg

-l—cos@[AE: (ksin@) — BE T (ksin)]

mn=—mn mn=—- mn

+Z0 [Cmn —mn mnt mn

(ksin®) + DI T} (rsind)] sin mgb}} (18b)

In the far region we have the relations
By = —jwAy = jwsinbA,, (19)
H@:—]ng :ijineFZ:_YOE(b, A¢:Z08in9Fz

3.4. Physical Optics Approximate Solutions

Here we derive the physical optics solutions in order to compare with
the KP solutions. Since we assume the dipole is placed at ¢g = 0,
so p- and ¢-directed dipole can be treated as x- and y-directed dipole
respectively.
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3.4.1. x-directed Dipole

The incident and reflected field are
I exp(—jkR,)

Al = o 7, (20a)

. ex kR
H' = yy [yzo + 2y — yo) [ } p(R]Q v) (20b)

J— 9 p— /_
E%:wﬁh¥m1m+m/mg r0)—4(z0) (= me%
P
ik
exp(Rj R,) (200)
P

. Do ., . 1 | exp(—jkRy)

H —A47T [ gzo + 2(y yo)] [jk + Rp] 2 (20d)
. Aol 2 | Al /- s ’
W:ﬁmﬁh%uam+m/mg m+WMxx%Hw}

P
exp(;%]k:Rp) (20¢)
P

where I is the strength of the dipole current, (z/,y’) the rectangular
coordinates of a point on the circular disk, (0, ¢) the spherical angular
coordinates of the observation point, R the distance of the observation
point from the center of the disk, and R, the distance between the
source point and the point on the disk. R and R, are given by

R= a2+ 2+ 2%, Ry=1/(o — w02+ (s — )2 + 2 (200)

In order to determine the current densities, we apply the SIBC

on the plane z = 0 and get the reflection coefficient as A =
C+’Yzo*a(m’7;p0)2, Rf,
(Frzota(a'—w0) +BR2’ where
3 3j 1 ; y
= — -1, —1— ] _po T
(% k2R2+kR /8 k2R12) kRp’ Y p—l— .

In case, surface impedance becomes zero this leads to the case of
perfectly conducting disk as it should be giving the reflection coefficient
—1.
The current densities are
M=-nx E",  J=nxH" (21a)
_ (2o JkZolo
_C+’yzo+a(x’—:vo)2+ﬂR12) 2m
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{mx’—xo>2—fc<y'—yo><x'—xo>aW}exp(—ijp) (211)

R? R,
(a(z' —20)* +BR2) Iy . [ 1]exp(—jkR
- ; 5 1 2—0 [—xzo][jk—l—]p( ]2 v) (21c)
(tyzo+a(z'—xo)"+BR2 2T Ry Ry

The corresponding vector potentials are
ol 20 0 (1]
CFyzo + ala! — o) + BR2 /

Ry
% exp(—jkR,) x exp [jksin0(z' cos ¢ + y'sin@)] dz'dy’  (22a)

plo 4
A, =— —7kR
SR exp(—j )/S

P
_ pdo »
F,= S2R exp(—jkR)
SRE Y —yo)(a —= .
/ 7 0 5 204( 0)(3 0) exp(—jkRy)
s (Tyzo+a(z’—x0)"+BR2 R
x exp [jksin 6(z' cos ¢ + y' sin @)] da'dy’ (22b)
wlo ) SRED a(a’ —wp)”
F, = exp(—jkR / ( +0
v=5mR O ) s (Tyzo+a(a'—z)’+4R2 R
eXP(_ijp)

B x exp [jksinf(z’ cos ¢ + y' sin ¢)| da’dy’ (22¢)
P
3.4.2. y-directed Dipole
The incident vector potential is
s — 1o exp(—jkR,)
LY R,

We obtain the current densities and corresponding vector potentials in
similar way as in x-directed case. The current densities are

(23)

_ QR JkZoly
(tyzo+a(y —yo)’+BRE 27
9@’ —20)(y —yo) =2 —y0)* . .| exp(—jkRy)
a—if p————" (24a)
{ " Z
GO NP {jk g}exp(_ijp) (24b)
(Fyz0+aly' —yo)*+BR2 27 Ry Ry
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The corresponding vector potentials are

417

I _ (aly —go)* +BRY) [ 1
)= _SN;}% exp(—jij)/ - / 2 []k—i— R] dy’
™ s Ctyzo + oy —yo)” + BR; »
72 exp(—jkR,) x exp [jksin6(z' cos ¢ + y'sin@)] da'dy’  (25a)
P
o . SR a(y' —yo)*
F,=— exp —ij/ ( +0
sw2 PO s Ctyzotaly —yo)*+BRI\ R}
ik
GXMR]RM X exp [jk: sin 6 (x' cos ¢ + y sin gb)] dx'dy’ (25b)
P
I + I /_
= MZO exp(_ij)/ 20 i 2 (z fb’o)(3y Yo)
8T s (tyzo+a(y —yo) +OR2 Ry
exp(—jkRy) X exp [jk sin @(x’ cos ¢ + 3 sin d))] dx'dy' (25c¢)
3.4.8. z-directed Dipole
The incident vector potential
; _ Lo exp(—jkRy)
A= —— 25 2
4y R, (26)

The current densities are

(' —w0)(20) =2y —yo) (20)

g

_ My gkZodo
azg—Cty 27 R2
exp(—jkRy)
27
o (27a)
azo Io ~r ] s . 1
J=— 250 07 sy — ) — _ k4 —
P [—9(y" — yo) — &(2" — x0)] [J + Rp]
exp(—jkRy)
TP (27b)
The corresponding vector potentials are
Iy _ oz [ 1] (2 — o)
Ay = — —jkR) | —220 g — | T
8TR exp(— )/S azg — (ty _‘7 + R, | R2
exp(—jkRy) X exp [jk: sin (2’ cos ¢ + 3 sin gb)] dr'dy’  (28a)
1o . / azg . 1 ¥ = o)
Ay = — exp(—jkR) [ — 20 ik 4 — | W W)
v = Tgmp OPIRR) | e R R R?

exp(—jkRy) X exp [jk sin 0(z’ cos ¢ + ¢’ sin d))] da'dy’  (28b)
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I . (v a(y' —yo)(20) ,
F, = SR eXP(]kR)/sOZZO—CJF’}/ I exp(—jkRy)
x exp [jk sin 6(z' cos ¢ + y' sin @)] dz'dy’ (28c¢)
1lo , "y (2’ —20)(20) ,
F, = SR exp(—ij)/SaZO —C+’Ya RS exp(—jkRy)
X exp [jk: sin §(z’ cos ¢ + 3 sin gb)] dx'dy' (28d)
Far field is obtained from the relation Ey = —jw[Ay + ZoF,| and

Ey = —jw[Ay — ZoFy) where Ay = Ay cosbcosd +Aycosfsing and
Ay = —A;sing + Ay cos ¢.

4. RESULTS AND DISCUSSION

To investigate the dipole field scattering characteristics of impedance
disk, expansion coefficients A,,,;, ~ Dy, needs to be determined. These
are determined through numerical computations and we have taken
m,n = 2 * k. The theoretical expressions for the far field are given
by (19) for the impedance disk. The dipole is placed at 2.5\g and
in zz-plane (¢pg = 0). Fig. 2 to Fig. 13 show the far field patterns
of the impedance disk in the ¢-cut plane ¢ = 0,7 for p-, ¢-, and z-
directed dipole for different angle of incidence, disk sizes and surface
impedances. The normalized disk sizes are kK = ka = 3, ka = 5 and,
ka = 7 respectively. In all these figures, the normal incidence is for
0o = 0. In all results, the value of surface impedance ({ = 0.3—750.1) is
used except where the results are shown for different values of surface
impedances which are mentioned in figures explicitly. In these figures,
the field patterns obtained using the physical optics (PO) method
are also included for comparison. The PO results are obtained using
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Figure 2. Comparison of KP and Figure 3. Field patterns for

PO methods for p-directed dipole. different incident angles for p-

directed dipole.
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Figure 4. Field patterns for Figure 5. Field patterns for
different disk sizes for p-directed different surface impedances for p-
dipole. directed dipole.
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Figure 8. Field patterns for Figure 9. Field patterns for
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dipole. ¢-directed dipole.
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Figure 10. Comparison of KP Figure 11. Field patterns for
and PO methods for z-directed different incident angles for z-
dipole. directed dipole.
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Figure 12. Field patterns for Figure 13. Field patterns for
different disk sizes for z-directed different surface impedances for z-
dipole. directed dipole.

(22) ~ (28). It is observed from the comparison that the PO and
KP results agree well for normal incidence (g = 0) but the degree of
discrepancy increases as the angle of incidence becomes large. It is due
to the fact that the PO approximation inaccuracy increases for shadow
region contribution. The values of the normalized surface impedance ¢
(0.3-j0.1, 0.15-j0.09, 0.12-j0.07) are taken from [42] which correspond
to 5%, 10%, and 20% respectively gravimetric moisture content in San
Antonio Gray Clay Loam with a density of 1.4g/cm?. We also observe
that the scattered field increases as the surface impedance of the disk
decreases and it approaches to perfect electric conductor (PEC) disk
scattering [23] case as the surface impedance leads to zero, as expected.
Because PEC boundary condition is a special case of surface impedance
boundary condition. But we see that this effect is more pronounced
for p-directed dipole as compared to ¢-directed dipole. We observe
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through Figs. 3, 7 and 11 that the peak of the field patterns shifts as
the incidence angle changes and the side lobes become more prominent
as we increase the incidence angle.
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