Vol. 42
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-07-12
Fd2td Analysis of Electromagnetic Field Propagation in Multipole Debye Media with and Without Convolution
By
Progress In Electromagnetics Research B, Vol. 42, 181-205, 2012
Abstract
This paper deals with the time-domain numerical calculation of electromagnetic (EM) fields in linearly dispersive media described by multipole Debye model. The frequency-dependent finite-difference time-domain (FD2TD) method is applied to solve Debye equations using convolution integrals or by direct integration. Original formulations of FD2TD methods are proposed using different approaches. In the first approach based on the solution of convolution equations, the exponential analytical behavior of the convolution integrand permits an efficient recursive FD2TD solution. In the second approach, derived by circuit theory, the transient equations are directly solved in time domain by the FD2TD method. A comparative analysis of several FD2TD methods in terms of stability, dispersion, computational time and memory is carried out.
Citation
Mauro Feliziani, Silvano Cruciani, Valerio De Santis, and Francesearomana Maradei, "Fd2td Analysis of Electromagnetic Field Propagation in Multipole Debye Media with and Without Convolution," Progress In Electromagnetics Research B, Vol. 42, 181-205, 2012.
doi:10.2528/PIERB12060109
References

1. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media ," IEEE Trans. Antennas Propag., Vol. 14, 302-307, May 1966.
doi:10.1109/TAP.1966.1138693

2. Luebbers, R. J., F. P. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schneider, "A frequency-dependent finite-difference time-domain formulation for dispersive materials," IEEE Trans. Electromagn. Compat., Vol. 32, No. 3, 222-227, Aug. 1990.
doi:10.1109/15.57116

3. Luebbers, R. J. and F. P. Hunsberger, "FDTD for Nth-order spersive media," IEEE Trans. Antennas Propag., Vol. 40, No. 11, 129-1301, Nov. 1992.

4. Kelley, D. F. and R. J. Luebbers, "Piecewise linear recursive convolution for dispersive media using FDTD," IEEE Trans. Antennas Propag., Vol. 44, No. 6, 792-797, Jun. 1996.
doi:10.1109/8.509882

5. Buccella, C., V. De Santis, M. Feliziani, and F. Maradei, "Fast calculation of dielectric substrate losses in microwave applications by the FD2TD method using a new formalism," IEEE International Symposium on EMC, Fort Lauderdale, USA, Jul. 25-30, 2010.

6. De Santis, V., M. Feliziani, and F. Maradei, "Safety assessment of UWB radio systems for body area network by the FD2TD method," IEEE Trans. Magn., Vol. 46, No. 8, 3245-3248, Aug. 2010.
doi:10.1109/TMAG.2010.2046478

7. Kashiwa, T. and I. Fukai, "A treatment by the FDTD method of the dispersive characteristics associated with electronic polarization," Microw. Opt. Technol. Lett., Vol. 3, No. 6, 203-205, 1990.
doi:10.1002/mop.4650030606

8. Joseph, R. M., S. C. Hagness, and A. Taflove, "Direct time integration of Maxwell's equations in linear dispersive media with absorption for scattering and propagation of femtosecond electromagnetic pulses," Opt. Lett., Vol. 16, No. 18, 1412-1414, Sept. 1991.
doi:10.1364/OL.16.001412

9. Gandhi, O. P., B. Q. Gao, and J. Y. Chen, "A frequency-dependent finite-difference time-domain formulation for general dispersive media," IEEE Trans. Microw. Theory Tech., Vol. 41, No. 4, 658-664, Apr. 1993.
doi:10.1109/22.231661

10. Young, J. L., "Propagation in linear dispersive media: Finite difference time-domain methodologies," IEEE Trans. Antennas Propag., Vol. 43, No. 4, 422-426, Apr. 1995.
doi:10.1109/8.376042

11. Okoniewski, M., M. Mrozowski, and M. A. Stuchly, "Simple treatment of multi-term dispersion in FDTD," IEEE Microw. Guided Wave Lett., Vol. 7, No. 5, 121-123, 1997.
doi:10.1109/75.569723

12. Takayama, Y. and W. Klaus, "Reinterpretation of the auxiliary differential equation method for FDTD," IEEE Microw. Wireless Comp. Lett., Vol. 12, No. 3, 102-104, 2002.
doi:10.1109/7260.989865

13. Sullivan, D. M., "Frequency-dependent FDTD methods using Z transforms," IEEE Trans. Antennas Propag., Vol. 40, No. 10, 1223-1230, Oct. 1992.
doi:10.1109/8.182455

14. Sullivan, D. M., "Z-transform theory and the FDTD method," IEEE Trans. Antennas Propag., Vol. 44, No. 1, 28-34, Jan. 1996.
doi:10.1109/8.477525

15. Weedon, W. H. and C. M. Rappaport, "A general method for FDTD modeling of wave propagation in arbitrary frequency dispersive media," IEEE Trans. Antennas Propag., Vol. 45, 401-410, 1997.
doi:10.1109/8.558655

16. Rappaport, C., S. Wu, and S. Winton, "FDTD wave propagation in dispersive soil using a single pole conductivity model," IEEE Trans. Magn., Vol. 35, 1542-1545, May 1999.
doi:10.1109/20.767262

17. Kosmas, P., C. Rappaport, and E. Bishop, "Modeling with the FDTD method for microwave breast cancer detection," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 8, 1890-1897, Aug. 2004.
doi:10.1109/TMTT.2004.831985

18. Siushansian, R. and J. L. Vetri, "A comparison of numerical techniques for modeling electromagnetic dispersive media," IEEE Microw. Guided Wave Lett., Vol. 5, No. 12, 426-428, 1995.
doi:10.1109/75.481849

19. Chen, Q., M. Katsurai, and P. H. Aoyagi, "An FDTD formulation for dispersive media using a current density," IEEE Trans. Antennas Propag., Vol. 46, No. 11, 1739-1746, 1998.
doi:10.1109/8.736632

20. Liu, S., N. Yuan, and J. Mo, "A novel FDTD formulation for dispersive media," IEEE Microw. Wireless Comp. Lett., Vol. 13, No. 5, 187-189, 2003.
doi:10.1109/LMWC.2003.811668

21. Teixeira, F. L., "Time-domain finite-difference and finite-element methods for Maxwell equations in complex media," IEEE Trans. Antennas Propag., Vol. 56, No. 8, 2150-2166, Aug. 2008.
doi:10.1109/TAP.2008.926767

22. Zhang, Y.-Q. and D.-B. Ge, "A unified FDTD approach for electromagnetic analysis of dispersive objects," Progress In Electromagnetics Research, Vol. 96, 155-172, 2009.
doi:10.2528/PIER09072603

23. Young, J. L., A. Kittichantphayak, Y. M. Kwok, and D. Sullivan, "On the dispersion errors related to (FD)2TD type schemes," IEEE Trans. Microw. Theory Tech., Vol. 43, No. 8, 1902-1910, Aug. 1995.
doi:10.1109/22.402280

24. Young, J. and R. Nelson, "A summary and systematic analysis of FDTD algorithms for linearly dispersive media," IEEE Antennas Propag. Mag., Vol. 43, No. 1, 61-126, Feb. 2001.
doi:10.1109/74.920019

25. Kunz, K. and R. Luebbers, The Finite Difference Time Domain Method for Electromagnetics, CRC Press, Boca Raton, FL, 1993.

26. Petropoulos, P. G., "Stability and phase analysis of FD-TD in dispersive dielectrics," IEEE Trans. Antennas Propag., Vol. 42, No. 1, 62-69, Jan. 1994.
doi:10.1109/8.272302

27. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite Difference Time Domain, 3rd Edition, Artech House, Norwood, MA, 2005.

28. Bidégaray-Fesquet, B., "Stability of FD-TD schemes for Maxwell-Debye and Maxwell-Lorentz equations," SIAM J. Numer. Anal., Vol. 46, No. 5, 2551-2566, Jun. 2008.
doi:10.1137/060671255

29. Mur, G., "Absorbing boundary conditions for the finite-di®erence approximation of the time-domain electromagnetic-field equations," IEEE Trans. Electromagn. Compat., Vol. 23, No. 4, 377-382, Nov. 1981.
doi:10.1109/TEMC.1981.303970

30. Roden, J. A. and S. D. Gedney, "Convolution PML (CPML): An efficient FDTD implementation of the CFS - PML for arbitrary media," Microwave and Optical Technology Letters, Vol. 27, No. 5, 334-339, Dec. 2000.
doi:10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A