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Abstract—This paper deals with the time-domain numerical
calculation of electromagnetic (EM) fields in linearly dispersive media
described by multipole Debye model. The frequency-dependent
finite-difference time-domain (FD2TD) method is applied to solve
Debye equations using convolution integrals or by direct integration.
Original formulations of FD2TD methods are proposed using different
approaches. In the first approach based on the solution of convolution
equations, the exponential analytical behavior of the convolution
integrand permits an efficient recursive FD2TD solution. In the
second approach, derived by circuit theory, the transient equations are
directly solved in time domain by the FD2TD method. A comparative
analysis of several FD2TD methods in terms of stability, dispersion,
computational time and memory is carried out.

1. INTRODUCTION

The electromagnetic (EM) field propagation through dispersive,
or frequency-dependent, materials has been subject of numerical
investigations since many years, especially using techniques based
on the finite-difference time-domain (FDTD) scheme [1]. These
techniques, known as frequency-dependent finite-difference time-
domain (FD2TD) methods, differ for the way they incorporate the
dispersive media behavior in the numerical solution scheme.
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In the present work, original FD2TD methods are proposed
to analyze linear frequency-dispersive media described by multi-pole
Debye dispersions which are representative of many biological tissues
and many materials used for dielectric substrates in electronic devices.
These new methods are able to solve time-domain equations in presence
and in absence of convolution integrals.

The FD2TD techniques based on the solution of convolution
equations are known as recursive convolution (RC) methods since the
convolution integral between the frequency-dependent susceptibility
and the electric field is efficiently implemented in a recursive
way due to the exponential nature of the susceptibility function
exhibited by many dispersive materials [2–4]. Among the recursive
convolution approaches, the piecewise linear recursive convolution
method proposed by Kelley-Luebbers (here named as KL-PLRC) is
considered very accurate [4]. Recently, a new FD2TD RC method
has been proposed to analyze losses into dielectric substrates [5] or
biological tissues [6]. In this approach, the transient polarization
current is analytically derived by the inverse Laplace Transform (LT)
and directly implemented into Maxwell’s curl equation. The resulting
convolution integral in time domain is then solved by an efficient
recursive scheme based on piecewise constant (PC) approximation of
the electric field. This method is named as LT-PCRC and it is here
improved by substituting the numerical integration proposed in [6] with
a closed analytical formula. In addition, the use of a piecewise linear
(PL) approximation instead of the piecewise constant approximation
is presented for the first time in the new LT-PLRC method.

In order to avoid the solution of the convolution equations,
alternative FD2TD methods have been also proposed in the past [7–21].
They mainly rely on auxiliary differential equation (ADE) methods [7–
12], or Z-Transform (ZT) methods [13–17]. In this paper, a new and
simple FD2TD method without convolution equations is proposed.
It is derived from the circuit theory, since the transient polarization
current density in a Debye medium is obtained by the analogy with
the transient current flowing into a resistive-capacitive circuit, whose
time-domain solution is available. This original method is named as
CIRC.

In the following sections, first the mathematical formulations
of the new proposed FD2TD methods are provided. Then, a
comparative analysis with popular FD2TD methods is presented
in terms of numerical stability, accuracy, computational time, and
memory storage. Finally, for the sake of simplicity, one-dimensional
(1D) applications are examined to verify the performances of the
several FD2TD methods. It should be noted that the analysis of the 1D
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dimensional propagation is completely adequate since all the interest
is in the time integration rather than in the spatial solution.

2. MATHEMATICAL FORMULATION

Electromagnetic fields in frequency domain are described by Maxwell’s
curl equations:

∇×E(ω) = −jωµH(ω) (1a)
∇×H(ω) = jωε0ε̂r(ω)E(ω) (1b)

where ω is the angular frequency; E(ω) and H(ω) are the
time-harmonic electric and magnetic fields, respectively; µ is the
permeability; σ0 is the free space permittivity; ε̂r(ω) is the frequency-
dependent complex relative permittivity. In case of a Np-pole Debye
dispersive media, ε̂r(ω) is given by:

ε̂r(ω) = ε∞ − j
σ0

ωε0
+

Np∑

m=1

∆εm

1 + jωτm
(2)

where ε∞ is the infinite relative permittivity obtained as ω→ ∞ and
σ0 the conductivity obtained as ω→0. ∆εm and τm are the change in
relative permittivity and relaxation time of the mth pole, respectively,
being m = 1, 2, . . ., Np. Equation (1b) can be then rewritten as:

∇×H(ω) = J(ω) (3)

where the total current density J(ω) is given in frequency domain by:

J(ω) = Jσ(ω) + Jε(ω) +
Np∑

m=1

Jp,m(ω) (4)

with

Jσ(ω) = σ0E(ω) (5a)
Jε(ω) = jωε0ε∞E(ω) (5b)

Jp,m(ω) = jωε0
∆εm

1 + jωτm
E(ω) (5c)

In (5), Jσ(ω) is the conductive current density, Jε(ω) the
displacement current density, and Jp,m(ω) the polarization current
density of the mth pole. Moving (1) into the time domain via (3)–
(5) it yields:

∇×E (t) = −µ
∂H (t)

∂t
(6a)
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∇×H (t) = σ0E (t) + ε0ε∞
∂E (t)

∂t
+

Np∑

m=1

Jp,m (t) (6b)

Equation system (6) can be numerically solved using finite
differences in time and space. Without any loss of generality, let
us consider a 1D problem with wave propagation along x-axis (E =
Eŷ,H = H ẑ,J = J ŷ). Adopting the leap-frog scheme, (6a) is solved
at the time instant t = n∆t and at point x = (i + 1/2)∆x, while (6b)
is solved at the time instant t = (n + 1/2)∆t and at point x = i∆x,
being ∆t the constant time step, n the time iteration number, ∆x the
space interval time and i the spatial number. Then, using the Yee’s
notation [1], the discretized system has the following form:

En (i + 1)− En (i)
∆x

=−µ
Hn+1/2 (i + 1/2)−Hn−1/2 (i + 1/2)

∆t
(7a)

Hn+1/2 (i + 1/2)−Hn+1/2 (i− 1/2)
∆x

= σ0
En+1 (i) + En (i)

2
+ε0ε∞

En+1 (i)−En (i)
∆t

+
Np∑

m=1

Jn+1/2
p,m (i) (7b)

The differences in the various FD2TD methods are mainly related
to the different way of dealing with the polarization current densities
Jp,m, as described in the following.

2.1. Convolution Based Models

The most popular recursive convolution method is based on the
solution of (6b) via a direct time domain solution of (5c):

Jp,m(t) = ε0
∂

∂t
[χm(t) ∗ E(t)] (8)

where χm(t) = L−1[∆εm/(1+sτm)] is the transient susceptibility of the
mth pole, s the Laplace variable, L−1 the inverse Laplace transform,
and ∗ denotes the convolution operator. Then, the convolution
Equation (8) is efficiently solved by recursive calculations saving
computational time and memory [2–4]. One of the most efficient
versions of this method is the KL-PLRC approach described in [4],
which is based on a piecewise linear approximation of the electric field.

A different but still efficient RC method has been recently
proposed in [5, 6]. It is based on both recursive convolution and
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analytical Laplace Transform of the integrand. In this method the
polarization current density (5c) is expressed in the Laplace domain
as:

Jp,m(s) = ym(s)E(s) (9)

where ym(s) = sε0∆εm/(1 + sτm) is the admittance of the mth pole.
Equation (9) is then transformed in time domain as:

Jp,m(t) = ym(t) ∗ E(t) (10)

The transient admittance ym(t) is analytically given by:

ym (t) = L−1 [ym (s)] =
ε0∆εm

τm

[
δ (t)− 1

τm
e−

t
τm

]
(11)

being δ the Dirac function. Then, the transient polarization current
density Jp,m(t) in (10) can be expressed as:

Jp,m(t) =
ε0∆εm

τm
E(t)− ε0∆εm

τ2
m

∫ t

0
e−(t−t′)/τmE(t′)dt′ (12)

or, in the 1D discretized form, as

Jn+1/2
p,m (i) =

ε0∆εm

τm

En+1 (i) + En (i)
2

− ξn+1/2
m (i) (13)

where ξ
n+1/2
m (i) is the convolution integral term at the time instant

t = (n + 1/2)∆t given by:

ξn+1/2
m (i) =

ε0∆εm

τ2
m

∫ (n+1/2)∆t

0
e−[(n+1/2)∆t−t′]/τmE

(
t′
)
dt′ (14)

Due to the exponential form of the kernel, the convolution
integral (14) is solved recursively as:

ξn+1/2
m (i) = e−

∆t
τm ξn−1/2

m (i)

+
ε0∆εm

τ2
m

∫ (n+1/2)∆t

(n−1/2)∆t
e−[(n+1/2)∆t−t′]/τmE

(
t′
)
dt′ (15)

Both piecewise constant and linear approximations can be adopted
for solving (15), as done by the LT-PCRC and the LT-PLRC methods,
respectively. In this paper, an improved formulation of the LT-PCRC
method is provided, while the LT-PLRC method is proposed for the
first time.
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2.1.1. LT-PCRC FD2TD Method

Assuming the electric field to be constant during the time interval ∆t,
a piecewise constant recursive convolution integration scheme can be
adopted, and (15) becomes:

ξn+1/2
m (i) = e−

∆t
τm ξn−1/2

m (i) +
ε0∆εm

τm

(
1− e−

∆t
τm

)
En (i) (16)

It should be noted that (16) differs from the formulas presented
in [5, 6] for the analytical integration of the exponential term. Via (13)
and (16), the equation system (7) can be updated by the following
iterative equations:

Hn+1/2(i+1/2) =Hn−1/2(i + 1/2)− ∆t

µ

En(i + 1)− En(i)
∆x

(17)

En+1 (i) =


σ0

2
+

ε0ε∞
∆t

+
Np∑

m=1

ε0∆εm

2τm



−1


En (i)


−σ0

2
+

ε0ε∞
∆t

−
Np∑

m=1

ε0∆εm

2τm




+
Np∑

m=1

ξn+1/2
m (i)+

Hn+1/2(i+1/2)−Hn+1/2(i−1/2)
∆x


(18)

Equations (16)–(18) represent a 1D FD2TD solution of the
multipole Debye problem using the LT-PCRC approach. The main
advantage of the proposed method is based on the definition of the
specific admittance (11) that, in case of a Debye medium, is analytically
known leading to an expression of the transient polarization current
density (12) without any time derivative. Note that the main difference
between the Kelley-Luebbers formulation [4] and the Laplace transform
approach is that the former is based on (8) while the latter is
based on (10). Therefore, the LT formulation avoids the numerical
discretization of the time derivative in (8).

2.1.2. LT-PLRC FD2TD Method

Equation (15) can be solved also using a piecewise linear approximation
for the electric field during the time interval ∆t. The convolution term
ξm in (13) must be calculated at time instant (n + 1/2)∆t. Therefore,
it can be approximated by the average value between two instants as:

ξn+1/2
m (i) =

ξn
m (i) + ξn+1

m (i)
2

(19)
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where [4]

ξn
m(i) =

n−1∑

q=0

[
En−q(i)ϑq

m +
(
En−q−1(i)− En−q(i)

)
ζq
m

]
(20)

being:

ϑq
m=

ε0∆εm

τ2
m∆t

∫ (q+1)∆t

q∆t
e−t′/τmdt′=

ε0∆εm

τm∆t

(
1−e−∆t/τm

)
e−q∆t/τm (21)

ζq
m=

ε0∆εm

τ2
m

1
∆t

∫ (q+1)∆t

q∆t

(
t′ − q∆t

)
e−t′/τmdt′

=
ε0∆εm

τm∆t

[(
1−e−∆t/τm

)
τm − e−∆t/τm∆t

]
e−q∆t/τm (22)

Due to their exponential form, (20)–(22) can be solved recursively
as in [4]:

ξn+1
m (i) = e−∆t/τmξn

m (i) +
(
ϑ0

m − ζ0
m

)
En+1 (i) + ζ0

mEn (i) (23)

being ϑq+1
m = e−∆t/τmϑq

m and ςq+1
m = e−∆t/τmςq

m. With some
manipulations, (19) can be rearranged as:

ξn+1/2
m (i)=

(
1+ e−∆t/τm

2

)
ξn
m (i)+

(
ϑ0

m − ζ0
m

2

)
En+1 (i)+

(
ζ0
m

2

)
En (i) (24)

and the updating equation for the electric field is finally given by:

En+1 (i) =


σ0

2
+

ε0ε∞
∆t

+
1
2

Np∑

m=1

ε0∆εm

τm

(
1− ϑ0

m − ζ0
m

τm

)

−1

·



Np∑

m=1

1 + e−∆t/τm

2
ξn
m (i) +

(
−σ0

2
+

ε0ε∞
∆t

−1
2

Np∑

m=1

ε0∆εm

τm

(
1− ϑ0

m − ζ0
m

τm

)
En (i)

+
Hn+1/2 (i + 1/2)−Hn+1/2 (i− 1/2)

∆x

]
(25)

2.2. FD2TD Method without Using Convolution Equations

An alternative way to solve the field propagation in Debye media
is based on the direct solution of time domain equations without
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Figure 1. Circuit equivalent to a multipole Debye dispersion model.

solving convolution integrals. The original method here proposed is
derived from the circuit theory and for this reason it is named in the
following as CIRC method. According to the circuit theory the current
density in (4)–(5) can be seen as the current flowing in the equivalent
electrical circuit shown in Fig. 1 composed by linear time invariant
(LTI) parameters.

The total current density J(ω) can be obtained through the
analysis of the LTI electrical circuit, whose electric parameters are
given by:

G0 = σ0, C∞ = ε0ε∞, Rm = τm/ (ε0∆εm) , Cm = ε0∆εm (26)

From a dimensional point of view, the electrical parameters of the
equivalent circuit are per unit length (p.u.l), i.e., G0 [S/m], C∞ and
Cm [F/m], Rm [Ω/m]. The total current density J(t) in time domain
is expressed as sum of various terms as:

J(t) = Jσ(t) + Jε(t) +
Np∑

m=1

Jp,m(t) (27)

where

Jσ(t) = G0E(t) (28a)

Jε(t) = C∞
∂E(t)

∂t
(28b)

The transient currents in G0 and C∞ are easily calculated with
the FDTD method, while the transient polarization current density
Jp,m(t) can be obtained through the direct time-domain analysis of
the LTI circuit.

From the circuit theory, it is well known that the constitutive
equation between E(t) and Jp,m(t) of a simple resistor-capacitor circuit
is given by:

E(t) = RmJp,m(t) +
1

Cm

∫ t

−∞
Jp,m(t)dt (29)
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Applying the time derivative to (29), it yields:
dE(t)

dt
= Rm

dJp,m(t)
dt

+
Jp,m(t)

Cm
(30)

Equation (30) can be solved numerically via finite differences at
time t = (n + 1/2)∆t, and the following discretized form holds:

En+1 (i)− En (i)
∆t

= Rm
J

n+1/2
p,m (i)− J

n−1/2
p,m (i)

∆t
+

J
n+1/2
p,m (i)

Cm
(31)

It should be noted that due to the different time instants at which
the electric field and the current density are staggered, central and
forward differences are respectively adopted to discretize the two time
derivatives in (31). Rearranging these terms, the current density is
given by:

Jn+1/2
p,m (i) =

RmCm

RmCm + ∆t

[
Jn−1/2

p,m (i) +
En+1 (i)−En (i)

Rm

]
(32)

The updating equation for the electric field is then obtained in terms
of circuit parameters as:

En+1 (i)

=


G0

2
+

C∞
∆t

+

Np∑
m=1

Cm

RmCm+∆t



−1



−G0

2
+

C∞
∆t

+

Np∑
m=1

Cm

RmCm+∆t


 En (i)

−
Np∑

m=1

RmCm

RmCm + ∆t
Jn−1/2

p,m (i) +
Hn+1/2 (i + 1/2)−Hn+1/2 (i− 1/2)

∆x

]
(33)

Equations (17), (32) and (33) represent the FD2TD solution of the
multipole Debye problem with the CIRC approach.

3. COMPARATIVE ANALYSIS

In this Section, a comparative analysis in terms of numerical stability,
accuracy, and computational requirements is provided. Specifically,
the LT-PCRC, LT-PLRC and CIRC methods are compared with other
popular and similar methods (i.e., KL-PLRC [4], ADE-1 [11], and
ADE-2 [10]). It should be noted that an analogous comparative
analysis can be found in [24] but for the only FD2TD methods available
at that time. Moreover, the choice of the above selected methods was
inevitably dictated by the resemblance of KL-PLRC with LT-PCRC
and LT-PLRC, and of ADE-1 and ADE-2 with CIRC. The only ZT
method has been excluded from this comparison due to its different
mathematical formulation. Details on the ZT method can be found
elsewhere [13–17].
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3.1. Numerical Stability

The stability of a finite difference scheme can be derived in several
ways [25–28]. In this paper, the same approach adopted in [27] is used
and the von Neumann stability analysis based on the Fourier transform
is carried out. Since we only deal with linear models, we can assume
that the scheme handles a single (vector valued) variable U with spatial
dependence Un(i) =Unejki∆x where k is the wavenumber. The scheme
is then described as Un+1 =GUn where G is known as amplification
matrix. A necessary stability criterion is related to the boundedness
of this system, which yields to the following condition

λmax = max (|λ1(G)| , . . . |λi(G)| , . . . , |λM (G)|) ≤ 1 (34)

being λi the ith eigenvalue of G, and M the number of independent
variables.

The goal of our investigation is to verify the stability performance
of the methods here proposed compared to those already known in
literature (i.e., KL-PLRC and ADE). To this aim, the amplification
matrices and the eigenvalues must be evaluated. While the former
have been analytically derived as reported in the Appendix A, the
latter resulted prohibitive to be provided in an analytical closed
form. Therefore, condition (34) was numerically verified when varying
the media parameters and the temporal-spatial discretization within
a range of significant values. The rationale behind the choice of
these parameters was dictated by common practice and previous
experience on the stability of FDTD schemes. Indeed, it is well-
known that methods based on the leap-frog scheme must satisfy
the Courant-Friedrichs-Lewy (CFL) stability condition given for a
dispersive material by:

κ = c∞∆t/∆x ≤ 1 (35)

where c∞ = 1/
√

µε0ε∞. Also, the analysis conducted in [28] has shown
that the stability of some ADE schemes is affected by the minimum
relaxation time, i.e., τ0 = min(τ1,τ2,...,τNp). To be consistent, the
single-pole Debye parameters ε∞, ∆ε, σ0, together with the parameters
κ and τ0 /∆t have been selected for the sensitivity analysis and varied
within the following ranges: ε∞ = 1–1000, ∆ε = 1–1000, σ0 = 0.001–
1, κ = 0.9–1.1, τ0/∆t = 0.1–1. Among these parameters, only τ0/∆t
and κ affect the stability of the several methods and the behavior of
λmax as function of these two parameters is shown in Fig. 2. As can be
observed, all the considered FD2TD methods are stable (i.e., λmax ≤
1) when κ ≤ 1, with the exclusion of the ADE-2 method that must
satisfy also the condition τ0/∆t ≥ 0.5. It means that the CFL condition
(i.e., κ ≤ 1) does not guarantee the stability for the ADE-2 method.
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Figure 2. Influence of the Debye and discretization parameters on
the numerical stability. (a) Effect of the κ factor on λmax. (b) Effect
of τ0/∆t on λmax.

This last method therefore can be assumed less robust than the other
considered FD2TD methods that are stable for κ ≤ 1.

3.2. Numerical Dispersion

To quantify the accuracy of the aforementioned schemes, a rigorous
analysis of the numerical dispersion errors should be considered. Let
us consider a plane wave propagating in the x direction and in a
homogeneous open domain, as described in [23, 24]. Then, the electric
and magnetic fields are assumed to be given by:

E(x, t) = E(k, ω)ej(ωt−kx) (36a)

H(x, t) = H(k, ω)ej(ωt−kx) (36b)

In a Yee discretized 1D space, Maxwell’s curl equations can be
rewritten as [24]:

jΩε0ε̃rE(k, ω) = −jK̃H(k, ω) (37a)

jΩµH(k, ω) = jK̃E(k, ω) (37b)

where ε̃r is the numeric relative complex permittivity and

Ω = (2/∆t) sin (ω∆t/2) (38a)

K̃ = (2/∆x) sin (k∆x/2) (38b)

In the following, the numeric relative complex permittivity is
initially provided only for new proposed formulations. Then, a
comparison with the dispersion errors found in [23, 24] for the other
FD2TD methods is outlined. It should be noted that ε̃r of such
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methods was derived for a single pole Debye medium when neglecting
the static conductivity σ0 [23], and therefore the same assumptions are
here adopted for a better comparison.

3.2.1. LT-PCRC Method

The equation for dispersion analysis of the LT-PCRC method
is obtained by discretizing the convolution integral (14) without
using the recursive algorithm, while adopting a piecewise constant
approximation for the electric field. Therefore, via (6b) and (13)–(14)
it yields:

ε0

[
ε∞

En+1 − En

∆t
+

∆ε

τ0

En+1 + En

2

−∆ε

τ0

(
1− e−∆t/τ0

) n∑

q=0

e−q∆t/τ0En−q

]
= ∇×Hn+1/2 (39)

Using (38b), the curl of H at x = i∆x and t = (n + 1/2)∆t is given
by:

∇×Hn+1/2 =−H(k,ω)ej(ω(n+1/2)∆t−ki∆x)

(
ejk∆x/2 − e−jk∆x/2

∆x

)
(40)

Introducing (36) and (40) in (39), it yields:

ε0E(k, ω)e−jki∆x

[
ε∞

ejω(n+1)∆t−ejωn∆t

∆t
+

∆ε

τ0

ejω(n+1)∆t + ejωn∆t

2

−∆ε

τ0

(
1− e−∆t/τ0

) n∑

q=0

e−q∆t/τ0ejω(n−q)∆t




=−jK̃H(k, ω)ejω(n+1/2)∆te−jki∆x (41)

After some mathematic manipulations, the following equation is
obtained:

ε0E(k, ω)

[
jΩε∞+

∆ε

τ0
Λ−∆ε

τ0

(
1− e−∆t/τ0

)
e−jω∆t/2

n∑
q=0

e−q∆t(1+jωτ0)/τ0

]

= −jK̃H(k, ω) (42)

where Λ = cos(ω∆t/2). By adopting the position z = exp{−∆t(1 +

jωτ0)/τ0}, and being lim
n→∞

n∑
q=0

zq = (1− z)−1(1− zn) ≈ (1− z)−1 then
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Equation (42) can be rewritten as:

ε0E(k, ω)

[
jΩε∞+

∆ε

τ0
Λ−∆ε

τ0

(
1−e−∆t/τ0

)
e−jω∆t/2

1−e−∆t(1+jωτ0)/τ0

]
=−jK̃H(k, ω) (43)

The numeric relative complex permittivity ε̃r is finally obtained by
comparing (37a) and (43) as:

ε̃r = ε∞ +
∆ε

jΩτ0

[
Λ− sinh (∆t/(2τ0))

sinh (∆t(1 + jωτ0)/(2τ0))

]
(44)

3.2.2. LT-PLRC Method

Following the same procedure as described above, the numeric relative
complex permittivity for the LT-PLRC method can be written as

ε̃r = ε∞+
∆ε

jΩτ2
0

e−jω ∆t
2

(
αβ+γ

2

)[
1+

cosh(∆t/(2τ0)) e−jω ∆t
2

sinh(∆t(1+jωτ0)/(2τ0))

]

+
∆ε

jΩτ0
− ∆ε

jΩτ2
0

βΛ (45)

where α = exp{−∆t/τ0}, β = [∆t − τ0(1 − α)]τ0/∆t and γ =
[τ0(1− α)− α∆t]τ0/∆t.

3.2.3. CIRC Method

After some mathematical manipulations and following the same
procedure described above, the numerical relative permittivity for the
CIRC method is obtained via (26) as:

ε̃r = ε∞ + ∆εejω ∆t
2 /

(
jΩτ0 + ejω ∆t

2

)
(46)

3.2.4. Comparison

To compare the dispersion errors of the several methods, it is
convenient to define the relative error functions as in [24]:

errreal = |Re {k − knum}/Re {k}| (47a)
errimag = |Im {k − knum}/Im {k}| (47b)

where k = ω
√

µε0εr and knum is the numerical solution of the
dispersion equation given for a 1D propagation by [23, 24]:

knum =
2

∆x
sin−1

[
∆x

√
ε̃r

c∆t
sin

(
ω∆t

2

)]
(48)
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Figure 3. The logarithm of the (a) phase error err real and
(b) attenuation error err imag as a function of angular frequency.

Under the assumption that the time-harmonic waves are of the
form exp{j(ωt − kx)}, it is evident that err real is a measure of the
numerical phase error and err imag is a measure of the numerical
attenuation error.

To have an idea of the discrepancies among the different FD2TD
methods considered here, the same 1D test case adopted in [24] is
examined. The numerical phase and attenuation errors are reported in
Figs. 3(a) and (b) for a material characterized by a single-pole Debye
dispersion relation with ε∞ = 1.8, ∆ε = 79.2, τ0 = 9.4 ps and assuming
the discretization parameters equal to ∆x = 37.5µm and ∆t = 2.5 fs.

From these plots it is noted that the numerical phase error of the
LT-PCRC method is higher than that of the other FD2TD methods
at lower frequencies, even if the absolute error is in any case very
low (∼ 10−5), at least for the considered material. As regards the
attenuation error, ADE-1 and CIRC methods are very efficient in
the whole frequency spectrum, while the convolution-based methods
(KL-PLRC, LT-PCRC and LT-PLRC) and the ADE-2 method present
higher error at lower frequencies, although the absolute value is once
again in the 10−4–10−5 order of magnitude.

3.3. Computational Requirement

The computational requirements of a numerical procedure depend
essentially on the number of algebraical operations and on the memory
requirements. For the sake of clarity, let us examine the LT-PCRC
equations (see Appendix B) to evaluate the electric field at each point
x = i∆x and at any time instant n∆t. Equation (B4a) must be
computed by a number of multiplications (M) equal to M = 2 and
additions (A) equal to A = 1 for each Debye pole, while solution of
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(B4b) requires M = 2 and A = 2 plus A = Np operations to calculate
the sum of the convolution term, i.e., Σξm. Assuming Nx as the total
number of the spatial points in the x-direction and Nt the total number
of the time steps, the number of algebraical operations of the LT-
PCRC method is equal to [(2A+2M) Np +2A+2M ] NtNx. Following
the same procedure described above, it is possible to calculate the
number of algebraical operations for the different FD2TD methods
under investigation. The result is summarized in Table 1, where
the different methods are listed in order of increasing cost. As can
observed, the difference in the computational cost among the several
methods increases as the number of poles Np. The magnetic field
calculation by (17) is equal for all the considered FD2TD methods and
therefore it is omitted in this method comparison.

In Table 1 it is also reported the memory requirement for each
time iteration, which is almost the same for all considered FD2TD
methods. The numerical cost for three-dimensional (3D) configurations
(not reported here for the sake of brevity) is analogous to that of the
1D case.

4. RESULTS AND DISCUSSION

Simple numerical test-cases are analyzed to verify the performances
of the different FD2TD methods. For all the considered applications,
the canonical 1D configuration (plane wave propagation along x-axis,
E = Eyŷ, and H = Hzẑ) is intentionally chosen for the availability of
the analytical solution in frequency domain. In the first application a
homogeneous single-pole Debye media is considered. The waveform of
the incident electric field Ei(t) source, located in x = 0, is described
by a monopole Gaussian pulse Ei(t) = exp{−(t/t0 − 4)2} where t0 =
62.5 ps. The calculation parameters used for the FD2TD analysis are:
∆x = min(λ′/10, δ/8), ∆t = ∆x/(2c∞), being δ the penetration

Table 1. Computational Requirements of different 1D FD2TD
methods.

Method Number of algebraical operations Memory storage

LT-PCRC [(2A + 2M) Np+ 2A + 2M ] NtNx (2 + Np ) Nx

ADE-2 [(2A + 2M) Np+ 2A + 2M ] NtNx (2 +Np ) Nx

ADE-1 [(2A + 2M) Np+ 3A +2M ] NtNx (2 +Np ) Nx+ 1

CIRC [(2A + 2M) Np+ 3A +2M ] NtNx (2 +Np)Nx+ 1

LT-PLRC [(3A + 3M) Np+ 2A + 2M ] NtNx (2 +Np ) Nx+ 1

KL-PLRC [(3A + 3M) Np+ 2A + 2M ] NtNx (2 +Np ) Nx+ 1
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depth, A′ = 0.001 the required attenuation of the excitation pulse,
λ = c′/fmax, c′ = 1/

√
µ0ε0ε′r, fmax =

√
− log(A′)/(πt0), ε′r = ε∞ +

Σm∆εm/(1 + (2πfmaxτm)2). The numerical transient computation is
terminated before than the EM pulse reaches the boundary extremities
of the considered domain in order to avoid any reflection which could
affect the benchmark validity among the considered FD2TD methods.

The influence of the ratio τ0/∆t has been evaluated for two Debye
media named as material #1 (single-pole with ε∞ = 4, ∆ε = 28,
σ0 = 0.01 S/m and τ0 = 0.7 ps) and material # 2 (single-pole with
ε∞ = 4, ∆ε = 2, σ0 = 0.01 S/m and τ0 = 0.7 ps). These two ideal
materials have been chosen since it is possible to obtain values of ∆t
comparable with τ0 while for typical Debye media used in practical
applications the time step ∆t imposed by the CFL condition is usually
much lower than the minimum relaxation time τ0. The error calculated
at x = 0.1m with different FD2TD methods is plotted as function of
the ratio τ0/∆t in Fig. 4 for both materials. Specifically, the error
is referred to the peak value of the transient “exact” solution E(x,t)
obtained by inverse transform of the analytical solution E(x, ω) in
the frequency domain, as described in [23]. From these figures it is
noted that the LT-PCRC methods is strongly sensitive to the ratio
τ0/∆t. However, good accuracy is achieved for all the considered
FD2TD methods when the ratio τ0/∆t > 5.

Finally, the accuracy and the computational efficiency of the
proposed FD2TD methods is also analyzed for a multipole Debye
medium (material #3: ε∞ = 3.92, ∆ε1 = 83.65, ∆ε2 = 2.77, σ0 =
0S/m, τ1 = 17.67 ps and τ2 = 0.9 ps) using the slab configuration of
Fig. 5. The cell size is ∆x = 50µm while the time step is ∆t = 0.166 ps.
The incident electric field is modelled by a soft source located in free
space in position x = 0 and given by Ei(t) = A exp{−(t/t0 − 4)2}
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Figure 4. Percentage error in the peak value for: (a) material #1,
(b) material #2.
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with t0 = 6.024 ps and A = 2. The Debye slab of material #3 is
placed in cells 301–1200, while free space occupies cells numbers 1–300
and 1201–1500. Mur’s absorbing conditions [29] are used at both the
boundaries of the domain.

The value of the electric fied inside the slab for the proposed
methods is compared with the analytical solution as shown in Fig. 6(a)
at the time t = 500∆t and in Fig. 6(b) at t = 1500∆t.

The frequency domain analytical solution of the wavenumber
k(ω) = ω

√
µε0εr(ω) is compared with that calculated numerically [16]

by:

kFDTD = − 1
j(x2 − x1)

ln

(
EFFT (ω, x2)
EFFT (ω, x1)

)
(49)

where x1 and x2 are two points located inside the Debye slab, EFFT

(ω, xi) is the FFT transform of the electric field Ez(t) at position xi

for i = 1, 2. As example, assuming x1 = 310∆x and x2 = 315∆x, the
trends of kFDTD is shown in Fig. 7 for the proposed FD2TD methods.

Figure 5. Test configuration for the material #3.
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(b) t = 1500∆t for the material #3.
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Figure 7. Wavenumber k: (a) amplitude and (b) phase for the
material #3.

As can be observed from both Figs. 6 and 7, a good agreement
between numerical and analytical solutions is achieved confirming the
accuracy of the proposed techniques.

5. CONCLUSION

Three FD2TD formulations have been proposed for the analysis of
electromagnetic field propagation in multipole Debye media with (LT-
PCRC, LT-PLRC) and without (CIRC) convolution equations. Two
of the three FD2TD methods hereby proposed are completely original
(i.e., LT-PLRC and CIRC) while the third method (i.e., LT-PCRC),
already presented in [5, 6], has been here improved.

The performances of LT-PCRC, LT-PLRC, and CIRC methods
have been compared with other similar FD2TD methods (KL-
PLRC [4], ADE-1 [11], and ADE-2 [10]). The result of the comparative
analysis has shown that all methods are very similar in terms of
stability, accuracy and memory storage, while the number of algebraic
operations is slightly different. Specifically, the LT-PCRC is the most
efficient method in terms of calculation time together with the ADE-2,
but this last must satisfy a much more restrictive stability condition.
On the other hand, the accuracy of both methods is dependent on the
ratio between the minimum relaxation time and the selected time step
τ0/∆t. For values of τ0/∆t > 5 their precision in the calculations is
comparable with that of the other FD2TD methods, at least in the
considered test cases. This condition is not a big limitation, since it
is easily satisfied by many materials as biological tissues or dielectrics
used in electronic components. However, for more generic analyses, the
other methods are recommended, with particular focus on the CIRC
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and ADE-1 due to their slightly better computational efficiency. It
should be also noted that this is the first time that the influence of
the ratio τ0/∆t has been deeply investigated in the field analysis of the
FD2TD methods.

APPENDIX A.

In this Appendix the amplification matrix of the proposed methods is
given considering a single pole Debye medium for the sake of brevity,
but the expressions for multipole Debye media can be easily obtained.

The amplification matrix for the LT-PCRC is:

G=




aξ 0 bξ

0 1 bH

(
ejk∆x−1

)
bEaξ cE

(
1−e−jk∆x

)
aE+bEbξ+cEbH

(
ejk∆x+e−jk∆x−2

)


 (A1)

where:

bH = −∆t/(µ∆x) (A2a)

aE =
(

ε0ε∞
∆t

− σ0

2
− ε0∆ε

2τ0

)(
ε0ε∞
∆t

+
σ0

2
+

ε0∆ε

2τ0

)−1

(A2b)

bE =
(

σ0

2
+

ε0ε∞
∆t

+
ε0∆ε

2τ0

)−1

(A2c)

cE =
1

∆x

(
σ0

2
+

ε0ε∞
∆t

+
ε0∆ε

2τ0

)−1

(A2d)

aξ = e−∆t/τ0 (A2e)

bξ = ε0∆ε
(
1− e−∆t/τ0

)/
τ0 (A2f)

The amplification matrix of the LT-PLRC method is:

G =




aξ + γ2bE1 γ2cE1

(
1− e−jk∆x

)
γ3

0 1 bH

(
ejk∆x − 1

)
bE1 cE1

(
1− e−jk∆x

)
γ4


 (A3)

where:

γ2=ϑ0 − ζ0 (A4a)

γ3=
(
ϑ0 − ζ0

) (
aE1 − cE1bH

(
ejk∆x + e−jk∆x − 2

))
+ ζ0 (A4b)

γ4=aE1 − cE1bH

(
ejk∆x + e−jk∆x − 2

)
(A4c)
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ϑ0=(1− aξ) ε0∆ε/τ0 (A4d)

ζ0=
τ0

∆t

(
ϑ0 −∆taξε0∆ε/τ2

0

)
(A4e)

aE1=
(

σ0

2
+

ε0ε∞
∆t

+
ε0∆ε

2τ0

(
1− ζ0

τ0

))−1(
ε0ε∞
∆t

−σ0

2
− ε0∆ε

2τ0

(
1− ζ0

τ0

))
(A4f)

bE1=
1
2

(1 + aξ)
(

σ0

2
+

ε0ε∞
∆t

+
ε0∆ε

2τ0

(
1− ζ0

τ0

))−1

(A4g)

cE1=
1

∆x

(
σ0

2
+

ε0ε∞
∆t

+
ε0∆ε

2τ0

(
1− ζ0

τ0

))−1

(A4h)

The amplification matrix of the CIRC method is:

G=




aJ + bJbE2 bJcE2

(
1− e−jk∆x

) bJ [aE2 + cE2bH(ejk∆x

+e−jk∆x − 2)− 1]
0 1 bH

(
ejk∆x − 1

)

bE2 cE2

(
1− e−jk∆x

) aE2 + cE2bH(
ejk∆x + e−jk∆x − 2

)




(A5)

where:

aE2=
(

ε0ε∞
∆t

− σ0

2
+

ε0∆ε

τ0 + ∆t

)(
ε0ε∞
∆t

+
σ0

2
+

ε0∆ε

τ0 + ∆t

)−1

(A6a)

bE2=
τ0

τ0 + ∆t

(
σ0

2
+

ε0ε∞
∆t

+
ε0∆ε

τ0 + ∆t

)−1

(A6b)

cE2=
1

∆x

(
σ0

2
+

ε0ε∞
∆t

+
ε0∆ε

τ0 + ∆t

)−1

(A6c)

APPENDIX B.

The methods described in the paper can be rewritten in order to reduce
the number of operation needed. Consider:

yn+1
m =amyn

m + bmun (B1a)

xn+1=αxn+1 +
M∑

m=1

cmyn+1
m =αxn+1+

M∑

m=1

cm(amyn
m + bmun)

=αxn+1 +
M∑

m=1

cmamyn
m +

M∑

m=1

cmbmun (B1b)
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Defining wn+1
m = cmyn+1

m (B1b) become:

xn+1 = αxn+1 +
M∑

m=1

amwn
m +

M∑

m=1

cmbmun (B2)

Consequently, (B1a)–(B1b) can be rewritten as:
wn+1

m = amwn
m + dmun (B3a)

xn+1 = αxn+1 +
M∑

m=1

wn+1
m (B3b)

where dm = cmbm. These passages can be applied to the proposed
methods. For the LTPCRC method (16) and (18) defining wm =
(σ0/2 + ε0ε∞/∆t +

∑Np

m=1(ε0∆εm/(2τm)))−1ξm, become:

wn+1/2
m (i) = aw,m(i)wn−1/2

m (i) + bw,m(i)En (i) (B4a)

En+1 (i) = aE(i)En (i)+bE(i)
(
Hn+1/2(i+1/2)−Hn+1/2 (i−1/2)

)

+
Np∑

m=1

wn+1/2
m (i) (B4b)

being
aw,m=exp {−∆t/τm} (B5a)

bw,m=


σ0

2
+

ε0ε∞
∆t

+
Np∑

m=1

ε0∆εm

2τm



−1

ε0∆εm

τm

(
1− e−

∆t
τm

)
(B5b)

aE =


σ0

2
+

ε0ε∞
∆t

+
Np∑

m=1

ε0∆εm

2τm



−1

−σ0

2
+

ε0ε∞
∆t

−
Np∑

m=1

ε0∆εm

2τm


(B5c)

bE =


σ0

2
+

ε0ε∞
∆t

+
Np∑

m=1

ε0∆εm

2τm



−1

1
∆x

(B5d)

For the LTPLRC method the Equations (24) and (25), defining wm =

(σ0
2 + ε0ε∞

∆t + 1
2

Np∑
m=1

ε0∆εm
τm

(1− ϑ0
m−ζ0

m
τm

))−1 1+e−∆t/τm

2 ξm, become:

wn+1
m (i)=aw,m(i)wn

m (i) + bw,m(i)En+1 (i) + cw,m(i)En (i) (B6a)

En+1 (i) = aE(i)En (i)+bE(i)
(
Hn+1/2(i+1/2)−Hn+1/2(i−1/2)

)

+
Np∑

m=1

wn
m (i) (B6b)
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being

aw,m = exp {−∆t/τm} (B7a)

bw,m =


σ0

2
+

ε0ε∞
∆t

+
1
2

Np∑

m=1

ε0∆εm

τm

(
1− ϑ0

m − ζ0
m

τm

)

−1

1 + e−∆t/τm

2
(
ϑ0

m − ζ0
m

)
(B7b)

cw,m =


σ0

2
+

ε0ε∞
∆t

+
1
2

Np∑

m=1

ε0∆εm

τm

(
1− ϑ0

m − ζ0
m

τm

)

−1

1 + e−∆t/τm

2
ζ0
m (B7c)

aE =


σ0

2
+

ε0ε∞
∆t

+
1
2

Np∑

m=1

ε0∆εm

τm

(
1− ϑ0

m − ζ0
m

τm

)

−1


ε0ε∞

∆t
− σ0

2
− 1

2

Np∑

m=1

ε0∆εm

τm

(
1− ϑ0

m − ζ0
m

τm

)
 (B7d)

bE =


σ0

2
+

ε0ε∞
∆t

+
1
2

Np∑

m=1

ε0∆εm

τm

(
1−ϑ0

m − ζ0
m

τm

)

−1

1
∆x

(B7e)

For the CIRC method (32) and (33) defining wm = (G0
2 + C∞

∆t +
Np∑

m=1

Cm
RmCm+∆t)

−1( RmCm
RmCm+∆t)Jp,m we have:

wn+1/2
m (i) = aw,m(i)wn−1/2

m (i) + bw,m(i)
(
En+1 (i)− En (i)

)
(B8a)

En+1(i) = aE(i)En (i)+bE(i)
(
Hn+1/2 (i+1/2)−Hn+1/2(i−1/2)

)

−
Np∑

m=1

wn−1/2
m (i) (B8b)

being

aw.m = RmCm/(RmCm + ∆t) (B9a)

bw,m = Rm

(
Cm

RmCm+∆t

)2
/

G0

2
+

C∞
∆t

+




Np∑
m=1

Cm

RmCm+∆t




 (B9b)
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aE =


G0

2
+

C∞
∆t

+

Np∑
m=1

Cm

RmCm+∆t



−1

C∞
∆t

−G0

2
+

Np∑
m=1

Cm

RmCm+∆t


 (B9c)

bE =


G0

2
+

C∞
∆t

+

Np∑
m=1

Cm

RmCm + ∆t



−1

1

∆x
(B9d)

Similar passages can be applied also to the methods LK-PLRC, ADE-1
and ADE-2 which have similar structures to, respectively, LTPLRC,
CIRC and LTPCRC leading to Table 1.
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