Vol. 130
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-07-26
Higher Order Method of Moments for Bistatic Scattering from 2D PEC Rough Surface with Geometric Modeling by NURBS Surface
By
Progress In Electromagnetics Research, Vol. 130, 85-104, 2012
Abstract
The higher order method of moments (HMOM) has been proposed to calculate the bistatic scattering from two-dimensional (2D) perfectly electric conducting (PEC) rough surface in this paper. The electric field integral equation (EFIE) is solved through the HMOM with the hierarchical higher order basis functions which are the modified Legendre polynomials. The non-uniform rational B-spline (NURBS) surface is applied to model the plane surface related to the rough surface. Validity of this approach is shown by comparing the bistatic scattering coefficient (BSC) to that of lower order MOM (LMOM) with the Rao-Wilton-Glisson (RWG) or rooftop basis function. This approach has fewer segments in the parametric directions than the LMOM with rooftop basis, and is more efficient for the fewer unknowns and requires less memory than the LMOM with RWG basis. Properties of EM scattering from a 2D Gaussian rough surface are also exhibited and analyzed.
Citation
Anqi Wang, Li-Xin Guo, Yi-Wen Wei, and Jing Ma, "Higher Order Method of Moments for Bistatic Scattering from 2D PEC Rough Surface with Geometric Modeling by NURBS Surface," Progress In Electromagnetics Research, Vol. 130, 85-104, 2012.
doi:10.2528/PIER12053012
References

1. Xu, P., L. Tsang, and K. S. Chen, "Fourth stokes parameter in polarimetric passive remote sensing from two-layer rough surfaces," Progress In Electromagnetics Research, Vol. 129, 125-141, 2012.

2. Zhu, X., Z. Zhao, W. Yang, Y. Zhang, Z. Nie, and Q. H. Liu, "Iterative time-resersal mirror method for imaging the buried object beneath rough ground surface," Progress In Electromagnetics Research, Vol. 117, 19-33, 2011.

3. Xu, P. and K. S. Chen, "Analysis of microwave emission of exponentially correlated rough soil surfaces from 1.4 GHz to 36.5 GHz," Progress In Electromagnetics Research, Vol. 108, 205-219, 2010.
doi:10.2528/PIER10072703

4. Yang, W., Z. Q. Zhao, C. H. Qi, W. Liu, and Z. P. Nie, "Iterative hybrid method for electromagnetic scattering from a 3-D object above a 2-D random dielectric rough surface," Progress In Electromagnetics Research, Vol. 117, 435-448, 2011.

5. Kong, J. A., Electromagnetic Wave Theory, John Wiley & Sons, New York, 1986.

6. Voronovich, A. G. and V. U. Zavorotny, "Theoretical model for scattering of radar signals in Ku- and C-bands from a rough sea surface with breaking waves," Waves in Random Media, Vol. 11, No. 3, 247-269, 2001.

7. Tsang, L., J. A. Kong, K. H. Ding, et al. Scattering of Electromagnetic Waves: Numerical Simulations, John Wiley & Sons, New York, 2001.
doi:10.1002/0471224308

8. Li, J., L. X. Guo, and H. Zeng, "FDTD method investigation on the polarimetric scattering from 2-D rough surface," Progress In Electromagnetics Research, Vol. 101, 173-188, 2010.
doi:10.2528/PIER09120104

9. Liu, P. and Y. Q. Jin, "Numerical simulation of the doppler spectrum of a flying target above dynamic oceanic surface by using the FEM-DDM method," IEEE Trans. Antennas Propag., Vol. 53, No. 2, 825-832, 2005.
doi:10.1109/TAP.2004.841294

10. Harrington, R. F., Filed Computation by Moment Method, IEEE Press, New York, 1993.

11. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 30, No. 3, 409-418, 1982.
doi:10.1109/TAP.1982.1142818

12. Wagner, R. L., J. M. Song, and W. C. Chew, "Monte carlo simulation of electromagnetic scattering from two-dimensional random rough surfaces," IEEE Trans. Antennas Propag., Vol. 45, No. 2, 235-245, 1997.
doi:10.1109/8.560342

13. Wang, A. Q., L. X. Guo, and C. Chai, "Numerical simulations of electromagnetic scattering from 2D rough surface: Geometric modeling by NURBS surface," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 10, 1315-1328, 2010.
doi:10.1163/156939310791958662

14. Cátedra, M. F., F. Rivas, and L. Valle, "A moment method approach using frequency independent parametric meshes," IEEE Trans. Antennas Propag., Vol. 45, No. 10, 1567-1568, 1997.
doi:10.1109/8.633870

15. Jorgensen, E., J. L. Volakis, P. Meincke, et al. "Higher order hierarchical legendre basis functions for electromagnetic modeling ," IEEE Trans. Antennas Propag., Vol. 52, No. 11, 2985-2995, 2004.
doi:10.1109/TAP.2004.835279

16. Yuan, H. B., N. Wang, and C. H. Liang, "Combining the higher order method of moments with geometric modeling by NURBS surfaces," IEEE Trans. Antennas Propag., Vol. 57, No. 11, 3558-3563, 2009.
doi:10.1109/TAP.2009.2023095

17. Ding, W. and G. F. Wang, "Treatment of singular integrals on generalized curvilinear parametric quadrilaterals in higher order method of moments," IEEE Antennas Wireless Propag. Lett., Vol. 8, 1310-1313, 2009.
doi:10.1109/LAWP.2009.2037930

18. Jarvenpaa, S., M. Taskinen, and P. Y. Oijala, "Singularity subtraction technique for high-order polynomial vector basis functions on planar triangles," IEEE Trans. Antennas Propag., Vol. 54, No. 1, 42-49, 2006.
doi:10.1109/TAP.2005.861556

19. Guo, L. X., A. Q.Wang, and J. Ma, "Study on EM scattering from 2-D target above 1-D large scale rough surface with low grazing incidence by parallel MOM based on PC clusters ," Progress In Electromagnetics Research, Vol. 89, 149-166, 2009.
doi:10.2528/PIER08121002

20. Wang, R. and L. X. Guo, "Numerical simulations of wave scattering from two-layered rough surface," Progress In Electromagnetics Research B, Vol. 10, 63-175, 2008.

21. Guo, L. X., Y. Liang, J. Li, and Z. S. Wu, "A high order integral SPM for the conducting rough surface scattering with the tapered wave incidence TE CASE," Progress In Electromagnetics Research, Vol. 114, 333-352, 2011.

22. Li, J., B. Wei, Q. He, L. Guo, and D. Ge, "Time-domain iterative physical optics method for analysis of EM scattering from the target half buried in rough surface: PEC case," Progress In Electromagnetics Research, Vol. 121, 391-408, 2011.
doi:10.2528/PIER11082906

23. Zhao, Y., X. W. Shi, and L. Xu, "Modeling with NURBS surfaces used for the calculation of RCS," Progress In Electromagnetics Research, Vol. 78, 49-59, 2008.
doi:10.2528/PIER07082903

24. Eastwood, J. W. and J. G. Morgan, "Higher-order basis functions for MoM calculations," IET Sci. Meas. Technol., Vol. 2, No. 6, 379-386, 2008.
doi:10.1049/iet-smt:20080056

25. Song, J. M. and W. C. Chew, "Moment method solutions using parametric geometry," Journal of Electromagnetic Waves and Applications, Vol. 9, No. 1-2, 71-83, 1995.
doi:10.1163/156939395X00253

26. Notaros, B. M. and B. D. Popovic, "Optimized entire-domain moment-method analysis of 3D dielectric scatterers," Int J. Numerical Modelling: Electronic Networks, Devices, and Fields, Vol. 10, 177-192, 1997.
doi:10.1002/(SICI)1099-1204(199705)10:3<177::AID-JNM270>3.0.CO;2-B

27. Zhang, Y., R. A. Geijn, M. C. Taylor, et al. "Parallel MOM using higher-order basis functions and PLAPACK in-core and out-of-core solvers for challenging EM simulations," IEEE Antennas and Propagation Magazine, Vol. 51, No. 5, 42-60, 2009.
doi:10.1109/MAP.2009.5432038

28. Lai, B., H. B. Yuan, and C. H. Liang, "Analysis of nurbs surfaces modeled geometries with higher-order MoM based aim," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 5-6, 683-691, 2012.
doi:10.1163/156939311794827285