Vol. 33
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-07-17
Nonlinear Subprofile Space for Radar HRRP Recognition
By
Progress In Electromagnetics Research Letters, Vol. 33, 91-100, 2012
Abstract
In this paper, a novel approach, namely nonlinear subprofile space (NSS), is proposed for radar target recognition using high-resolution range profile (HRRP). First, the HRRP samples are mapped into a high-dimensional feature space using nonlinear mapping. Second, the nonlinear features, namely nonlinear subprofiles, are extracted by nonlinear discriminant analysis. Then, for each class, the nonlinear subprofile space is formed using all the training nonlinear subprofiles of class. Finally, the minimum hyperplane distance classifier (MHDC) is used for classification. The aim of NSS method is to represent the feature area of target using nonlinear subprofile space, and effectively measure the distance between the test HRRP and feature area via minimum hyperplane distance (MHD) metric. The experimental results of measured data show that the proposed method has better performance of recognition than KPCA and KFDA.
Citation
Daiying Zhou, Xiaofeng Shen, and Yangyang Liu, "Nonlinear Subprofile Space for Radar HRRP Recognition," Progress In Electromagnetics Research Letters, Vol. 33, 91-100, 2012.
doi:10.2528/PIERL12052302
References

1. Li, H. J. and S. H. Yang, "Using range profiles as feature vectors to identify aerospace objects," IEEE Trans. Antennas and Propagation, Vol. 41, No. 3, 261-268, Mar. 1993.
doi:10.1109/8.233138

2. Zyweck, A. and R. E. Bogner, "Radar target classification of commercial aircraft," IEEE Trans. Aerospace Electronic Systems, Vol. 32, No. 2, 598-606, Apr. 1996.
doi:10.1109/7.489504

3. Eom, K. B. and R. Chellappa, "Noncooperative target classification using hierarchical modeling of high-range resolution radar signatures," IEEE Trans. Signal Processing, Vol. 45, No. 9, 2318-2326, Sep. 1997.
doi:10.1109/78.622954

4. Kim, K. T., D. K. Seo, and H. T. Kim, "Efficient radar target recognition using the MUSIC algorithm and invariant feature," IEEE Trans. Antennas and Propagation, Vol. 50, No. 3, 325-337, Mar. 2002.
doi:10.1109/8.999623

5. Nelson, D. E., J. A. Starzyk, and D. D. Ensley, "Iterated wavelet transformation and discrimination for HRR radar target recognition," IEEE Trans. System Man and Cybernetics-part: System and Humans, Vol. 33, No. 1, 52-57, Jan. 2003.
doi:10.1109/TSMCA.2003.808253

6. Wong, S. K., "Non-cooperative target recognition in the frequency domain," IEE Proc. Radar Sonar Navig, Vol. 151, No. 2, 77-84, Apr. 2004.
doi:10.1049/ip-rsn:20040197

7. Du, L., H. W. Liu, Z. Bao, and J. Y. Zhang, "A two-distribution compounded statistical model for radar HRRP target recognition," IEEE Trans. Signal Processing, Vol. 54, No. 6, 2226-2238, Jun. 2006.
doi:10.1109/TSP.2006.873534

8. Chen, B., H. W. Liu, and Z. Bao, "PCA and kernel PCA for radar high range resolution profiles recognition," 2005 IEEE International Radar Conference, 9-12, Arlington, VA, USA, May 2005.

9. Mika, S., G. Ratsch, J. Weston, B. Scholkopf, and K. R. Muler, "Fisher discriminant analysis with kernels," IEEE International Workshop on Neural Networks for Signal Processing, Berlin, Aug. 1999.

10. Fu, J. S. and W. L. Yang, "KFD-based multiclass synthetical discriminant analysis for radar HRRP recognition," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 2--3, 169-178, 2012.

11. Novak, L. M. and G. J. Owirka, "Radar target recognition using an eigen-image approach," IEEE National Radar Conference, Atlanta, USA, Mar. 29--31, 1994.

12. Duda, R., R. Hart, and D. Stock, Pattern Classification, Wiley, 2002.