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Abstract—In this paper, a novel approach, namely nonlinear
subprofile space (NSS), is proposed for radar target recognition
using high-resolution range profile (HRRP). First, the HRRP samples
are mapped into a high-dimensional feature space using nonlinear
mapping. Second, the nonlinear features, namely nonlinear subprofiles,
are extracted by nonlinear discriminant analysis. Then, for each
class, the nonlinear subprofile space is formed using all the training
nonlinear subprofiles of class. Finally, the minimum hyperplane
distance classifier (MHDC) is used for classification. The aim of
NSS method is to represent the feature area of target using nonlinear
subprofile space, and effectively measure the distance between the test
HRRP and feature area via minimum hyperplane distance (MHD)
metric. The experimental results of measured data show that the
proposed method has better performance of recognition than KPCA
and KFDA.

1. INTRODUCTION

With the advent of wideband radar, it is easy task to obtain the
high-resolution range profile (HRRP). It contains the target structure
signatures, such as target size, scatterer distribution, etc., which is
useful for target recognition. Therefore, more and more researchers
have paid close attention to radar target recognition using HRRP.
Li and Yang directly used HRRPs as feature vectors for target
recognition [1]. Zyweck and Bogner applied the HRRP to recognize
the commercial aircraft [2]. Eom and Chellappa studied a hierarchical
model for radar HRRP recognition [3]. Kim et al. presented some
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invariant features of HRRP [4]. Nelson et al. proposed a new feature
selection method for HRRP [5]. Wong applied the features in frequency
domain for non-cooperative target recognition [6]. Du et al. studied
the two-distribution compounded statistical model for radar HRRP
target recognition [7]. However, these methods often fail to gain good
target recognition when HRRPS are subject to complex nonlinear
variations due to change of target-aspect and noise’ effect, for they are
linear method in nature. Thus, kernel function is introduced to deal
with the nonlinear problems, such as kernel-based methods. Chen et
al. proposed kernel principal component analysis (KPCA) [8]. Mika
et al. studied kernel-based Fisher discriminant analysis (KFDA) by
regularizing the within-class scatter matrix [9]. Fu and Yang presented
a kernel method via multiclass synthetical discriminant analysis [10].
These methods do not still discuss how to represent the feature area of
target and how to measure the distance between the test HRRP sample
and feature area, which is very important to target recognition.

In this paper, a novel radar HRRP target recognition method,
namely nonlinear subprofile space (NSS), is proposed. This method
achieves good recognition performance by effectively representing the
feature area of target using nonlinear subprofile space and measuring
the distance between the test HRRP sample and feature area using
minimum hyperplane distance metric. The experiments on measured
data of three airplanes are simulated to verify the effectiveness of the
proposed method.

The rest of this paper is organized as follows. In Section 2,
we discuss nonlinear subprofile space. Section 3 proposed minimum
hyperplane distance classifier. Section 4 presents an experimental
study. Section 5 draws conclusions.

2. NONLINEAR SUBPROFILE SPACE

Let xij represents the jth training HRRP of ith class, where i =
1, 2, . . . , g, j = 1, 2, . . . , Ni, N = N1 + N2 + . . . + Ng, and g is the
number of target classes, Ni is the number of training samples for ith
class, and N is the number of total training samples.

A nonlinear function φ is used to map xij into a high-dimensional
feature space F as follow

Rn : xij → F : φ(xij ) (1)

where the dimensionality of feature space F is n′. Here n′ may be any
value or infinite. The between-class scatter matrix SB and within-class
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scatter matrix SW in feature space F can be calculated as follows
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where T represents the matrix transposition. Then, the columns of
transformation matrix H are solved by maximizing Fisher ratio as
follow

αm = arg
{α}

max
{

αTSBα

αTSwα

}
m = 1, 2, . . . , (g − 1) (4)

where αm is a n′-dimensional column vector of matrix H, i.e.,

H = [α1 α2 . . . αg−1] (5)

Because the explicit expression of nonlinear map φ(·) is not
defined, we can not directly get the orthogonal vectors α1 α2, . . . , αg−1

from Equation (4). Kernel trick is introduced to solve this problem.
Let

α =
g∑

i=1

Ni∑

j=1

wijφ(xij ) (6)

and
k(xij ,xlk) = φ(xij )T φ(xlk) (7)

where wij is a coefficient; xij and xlk are HRRP sample vectors.
Substituting Equation (6) and Equation (7) into Equation (4),
simplifying, we get

wm = arg
{w}

max
{

wT PBw
wT Pww

}
m = 1, 2, . . . , (g − 1) (8)

where

w =
[
w11 w12 . . . wgNg

]T (9)

PB =
g∑

l=1

(rl − q)(rl − q)T (10)
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PW =
g∑

l=1

Nl∑

k=1

(kijlk − rl)(kijlk − rl)T (11)

where

(rl)ij =
1
Nl

Nl∑

k=1

k(xij ,xlk) l=1, 2, . . . , g; k=1, 2, . . . , Nl (12)

qij =
1
N

g∑

l=1

Nl∑

k=1

k(xij ,xlk) (13)

(kijlk)ij =k(xij ,xlk) (14)

Take the vector derivative of Equation (8) with respect to w
and set resultant equation to zero. This generates the generalized
eigenvector equation as follow

P−1
W

PBw = λw (15)

where λ is the eigenvalue and w the eigenvector corresponding to
λ. Thus, wm is eigenvector corresponding to nonzero eigenvalue in
Equation (15). After getting wm, substituting wm into Equation (6),
it follows that

αm = [φ(x11) φ(x12 . . . φ(xgNg)] ·wm (16)

After getting H, projecting φ(xij ) into nonlinear transformation
space H in F , i.e.,

yij = HT φ(xij ) (17)

substituting Equation (16) into Equation (17), then simplifying, we
get

yij =




g∑
l=1

Nl∑
k=1

w1lkk(xlk,xij )

g∑
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Nl∑
k=1
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...
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(18)

where wmlk is the (lk)th element of vector wm (l = 1, 2, . . . , g; k =
1, 2, . . . , Nl), and yij is (g − 1)-dimensional vector, namely nonlinear
subprofile of HRRP sample xij . All of training nonlinear subprofiles
for each class is used to form the subprofile space as follow.

Oi = [yi1 yi2 . . . yiNi ] i = 1, 2, . . . , g (19)
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where Oi is named as nonlinear subprofile space (NSS) of ith class.
From Equation (19), it is seen that the nonlinear subprofile space is
spaned by all the training nonlinear feature vectors (subprofiles), thus
it represents the feature area of target.

3. MINIMUM HYPERPLANE DISTANCE CLASSIFIER

Because the dimensionality of Oi is (g − 1), any (g − 1) nonlinear
subprofiles from NSS Oi can form a hyperplane as follow

Oi,r = [yij1 yij2 . . . yij(g−1)
] j1, j2, . . . , j(g−1) = 1, 2, . . . , Ni

j1 6= j2 6= . . . 6= j(g−1) r = 1, 2, . . . , Cg−1
Ni

(20)

where Cg−1
Ni

is the number of hyperplanes in Oi. The distance between
the nonlinear subprofile yx and the hyperplane Oi,r is defined as

d (yx,Oi,r) = ‖yx − vr‖ (21)

where || · || is the vector norm, and vr is the projection of subprofile
yx on the hyperplane Oi,r. vr is given as follow

vr = Yr(YT
r Yr)−1YT

r yx (22)

where

Yr = [yijr1 yijr2 . . . yijr(g−1)
] jr1, jr2, . . . , jr(g−1) =1, 2, . . . , Ni

jr1 6= jr2 6= . . . 6= jr(g−1) (23)

Thus, we can get the distance between yx and the NSS Oi

d(yx,Oi) = min
{r}

{d(yx,Oi,r)} (24)

Let yt denotes the nonlinear subprofile of test HRRP sample xt,
which is solved according to Equation (18). If

d(yt,Ok) = min
{i}
{d(yt,Oi)} (25)

then the test HRRP sample xt belongs to kth class.

4. EXPERIMENTAL RESULTS

To show effectiveness of the proposed method, the experiments are
performed on HRRP samples measured from three airplanes, i.e., An-
26, Jiang and Yark-42. 260 HRRPs obtained continuously of each
airplane are adopted. For each airplane, half of all HRRPs are used as
training data and the rest are used as testing data. Before running
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experiments, each HRRP is preprocessed by energy normalization.
Two kernels are used, i.e., Gaussian kernel

k(xij ,xlk) = e−
‖xij−xlk‖2

2σ2 (26)

and polynomial kernel

k(xij ,xlk) = (1 + xij · xlk)d (27)

For subsequent analysis, we denote NSS method as NSS G when the
Gaussian kernel is used, and as NSS P when the polynomial kernel is
adopted. The parameters are empirically set as σ = 1.34 for Gaussian
kernel and d = 1 for polynomial kernel.

4.1. A Comparison between Nonlinear Subprofile Space and
Linear Subprofile Space

Table 1 shows the recognition results using nonlinear subprofile space
(NSS) and linear subprofile space (LSS). The linear subprofile space
is formed by LDA [3]. Then, the training subprofiles of NSS and LSS
for each class are averaged as library template vectors. The nearest-
neighbor classifier is used for classification.

From Table 1, it is seen that the average recognition rate for
NSS is higher than that for LSS, for either the Gaussian kernel or the
polynomial kernel. The average recognition rates for NSS (Gaussian
kernel), NSS (Polynomial kernel), and LSS are 91%, 90% and 88%,
respectively. The reason is that the nonlinear subprofile space can
represent the nonlinear variations of HRRP samples by nonlinear kernel
mapping.

Table 1. The confusion matrices and average recognition rates (ACR)
for NSS and LSS (%).

NSS (Gaussian kernel) NSS (Polynomial kernel) LSS 

An-26
 

 
Yak-42 An-26

 
Yak- 42 An-26 Yak-42

An-26 2 4 85 3 5 84 5 7 

5 92 2 5 92 2 5 88 2 

Yak-42 6 94 10 5 93 11 7 91 

ACR (%) 91 88 

86

90

9

Jiang Jiang Jiang

Jiang
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Table 2. The confusion matrices and average recognition rates (ACR)
for MHDC and MDC (%) (Gaussian kernel).

MHDC MDC

An-26 Jiang Yak-42 An-26 Jiang Yak-42

An-26 89 2 2 87 4 4

Jiang 3 95 1 3 90 2

Yak-42 8 3 97 10 6 94

ACR (%) 94 90

4.2. A Comparison between Minimum Hyperplane Distance
Classifier and Minimum Distance Classifier

After the nonlinear subprofile space of each class is formed based on
training data, minimum hyperplane distance classifier (MHDC) and
minimum distance classifier (MDC) are used for classification. The
results are illustrated in Table 2. The MDC is given as follow

dMDC (yt,Oi) = min
{j}
{‖yt − yij ‖} j = 1, 2, . . . , Ni (28)

where dMDC (yt,Oi) is the distance between the test sample xt

and NSS Oi. Then the test HRRP xt belongs to kth class, k =
arg min

{i}
{dMDC (yt,Oi)}.

It is seen from Table 2 that recognition performance for MHDC
is better than that for MDC. In Table 2, using Gaussian kernel,
the average recognition rates for MHDC and MDC are 94% and
90%, respectively. This is because traditional MDC directly uses
the Euclidean distance between subprofiles to measure the distance
between the test HRRP sample and NSS. It is possible to increase the
misclassification rates when there is the overlap between two different
NSS. But MHDC applies the minimum hyperplane distance to measure
the distance between the test HRRP sample and NSS, and is insensitive
to the overlap between different NSS, thus it is more effective for
classification than MDC.

4.3. Different Number of Samples

We choose 100, 140, 180, 220, and 260 HRRP samples for each class,
and adopts the NSS G method, NSS P method, and directly using
range profile (DRP) method [1] to identify these sample set. The
results is shown in Fig. 1.
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Figure 1. The average recogni-
tion rates of NSS G, NSS P, and
DRP versus number of samples.
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Figure 2. The average recogni-
tion rates of PCA, LDA, KPCA,
KFDA, NSS G and NSS P versus
SNR.

From Fig. 1, it can be observed that the average recognition rate
of DRP method obviously decreases when the number of samples is
increased, while that of NSS G method and NSS P method degrades
little. The main reason is that the HRRP is sensitive to change of
target-aspect, and the increase for number of samples is equivalent
to larger variations of target-aspect, thus recognition rate degrades
with the increase for the number of samples. But for the NSS method
proposed in this paper, nonlinear features are used to effectively reduce
the effect of the nonlinear variations of HRRP samples due to change of
target-aspect, and the recognition performance of NSS method remains
stable when the number of samples changes.

4.4. Recognition Performance Comparison

we also apply PCA [11], LDA [12], KPCA [8] and KFDA [9]. The
experiments are simulated for SNR = 5 dB, 10 dB, 15 dB, and 20 dB.
The Fig. 2 shows the average recognition rates of six methods versus
SNR.

As can be seen, the average recognition rates of KPCA, KFDA,
NSS G, and NSS P are significantly better than those of PCA and
LDA. At SNR = 15 dB, the average recognition rates of KPCA, KFDA,
NSS G, and NSS P are 81%, 85%, 90% and 89%, respectively; while
those of PCA and LDA are 77% and 79%, respectively. It demonstrates
that kernel function is effective for solving nonlinear problem. It is also
observed that the average recognition rate of NSS method (NSS G
or NSS P) is greater than that of other four methods (PCA, LDA,
KPCA and KFDA) when SNR > 5 dB. The reason is that NSS method
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takes into account the nonlinear feature area of target and the distance
metric between test sample and feature area, thus improves recognition
performance.

5. CONCLUSIONS

This paper proposes a novel radar target recognition method, namely
nonlinear subprofile space (NSS). The NSS method has two prominent
characteristics. First, nonlinear subprofile space is used to represent
the feature area of target. Second, the minimum hyperplane distance
is introduced to measure the distance between test sample and
feature area, which further improves the classification performance.
Experimental results for the measured data show that:

(1) The performance of nonlinear subprofile space is better than that
of linear subprofile space;

(2) The classification performance for minimum hyperplane distance
classifier is higher than that of traditional minimum distance
classifier;

(3) The recognition rate of NSS method is insensitive to change of
target-aspect;

(4) The recognition rate of NSS method is higher than that of KPCA,
KFDA, PCA and LDA, when SNR > 5 dB.
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