Vol. 42
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-08-02
Correlations of Deflection Angles of a Laser Beam in a Hot Turbulent Jet of Air: Theoretical Determination and Experimental Measurement of the Structure Coefficient of Refractive Index Fluctuations
By
Progress In Electromagnetics Research B, Vol. 42, 425-453, 2012
Abstract
Using the geometrical optics approximation, a theoretical prediction of the deflection angle correlation of a laser beam propagating in a hot turbulent jet is found as a functional form of the turbulent spectrum of the refractive index fluctuations. By applying the modified Von Karman model and Tatarskii model, the structure coefficient of the refractive index and the deflection angle correlation of the laser beam are then computed by means of a numerical procedure. Experiments to measure the structure coefficient are performed. A good agreement between the experimental results obtained and the theoretical predictions demonstrates the validity of the theoretical approach.
Citation
Jean Bilong II, Elisabeth Ngo Nyobe, Jacques Hona, and Elkana Pemha, "Correlations of Deflection Angles of a Laser Beam in a Hot Turbulent Jet of Air: Theoretical Determination and Experimental Measurement of the Structure Coefficient of Refractive Index Fluctuations," Progress In Electromagnetics Research B, Vol. 42, 425-453, 2012.
doi:10.2528/PIERB12050903
References

1. Tatarskii, , V. I., , Wave Propagation in a Turbulent Medium,, McGraw-Hill, , 1961.

2. Chernov, , L. A., , Wave Propagation in a Random Medium,, McGraw-Hill, , 1960..

3. Frehlich, , R., , "Simulation of laser propagation in a turbulent atmosphere," Applied Optics, , Vol. 39, No. 3, , 393-397, 2000.
doi:10.1364/AO.39.000393

4. Gomes, , C., M. Z. A. Abkadir, and , "Protection of naval systems against electromagnetic e®ect due to lightning," Progress In Electromagnetics Research, Vol. 113, 333-349, 2011.

5. Wei, , H.-Y., Z.-S. Wu, and Q. Ma, "Log-amplitude variance of laser beam propagation on the slant path through the turbulent atmosphere," Progress In Electromagnetics Research,, Vol. 108, 277-291, 2010.
doi:10.2528/PIER10072205

6. Guo, , J., Z. Xu, C. Qian, and W.-B. Dou, , "Design of a microstrip balanced mixer for satellite communication," Progress In Electromagnetics Research,, Vol. 115, 289-301, 2011.

7. O'Halloran, , M., M. Glavin, and E. Jones, "Rotating antenna microwave imaging system for breast cancer detection," Progress In Electromagnetics Research,, Vol. 107, , 331-348, 2010.

8. Zhu, , G. K., M. Popovic, and , "Comparison of radar and thermoacoustic technique in microwave breast imaging," Progress In Electromagnetics Research B, Vol. 35, 1-14, 2011.
doi:10.2528/PIERB11080204

9. ConceicÄao, , R., M. O'Halloran, M. Glavin, and E. Jones, "Numerical modelling for ultra wideband radar breast cancer detection and classification," Progress In Electromagnetics Research B, Vol. 34, 145-171, 2011.

10. Alshehri, , S. A., S. Khatun, A. B. Jantan, R. S. A. Raja Abdullah, R. Mahmood, and Z. Awang, "Experimental breast tumor detection using Nn-based UWB imaging," Progress In Electromagnetics Research,, Vol. 111, 447-465, 2011.
doi:10.2528/PIER10110102

11. Pemha, , E., E. Ngo Nyobe, and , "Genetic algorithm approach and experimental con¯rmation of a laser-based diagnostic technique for the local thermal turbulence in a hot wind tunnel jet," Progress In Electromagnetics Research B,, Vol. 28, 325-350, 2011..

12. Tatarskii, , V. I., "The effects of the turbulence atmosphere on wave propagation," US Dept. of Commerce, National Technical Information Service TT-68-50464, , 1971.

13. Consortini, A., F. Rigal, and , "Fractional moments and their usefulness in atmospheric laser scintillation," Pure Applied Optic,, Vol. 7, 1013-1032, 1998.
doi:10.1088/0963-9659/7/5/011

14. Ishimaru, , A., Wave Propagation and Scattering in Random Media,, Vol. 2, , Academic Press, , 1978.

15. Consortini, , A., K. A. O'Donnell, and , "Beam wandering of thin parallel beams through atmospheric turbulence," Waves in Random Media,, Vol. 3, , S11-S28, , 1991.
doi:10.1088/0959-7174/1/3/002

16. Consortini, , A., Y. Y. Sun, and G. Conforti, , "A mixed method for measuring the inner scale of atmospheric turbulence," Journal of Modern Optics, , Vol. 37, No. 10, , 1555-1560, 1990..
doi:10.1080/09500349014551731

17. Gulich, , D., G. Funes, L. Zunino, D. G. Perez, and M. Garavaglia, , "Angle-of-arrival variance's dependence on the aperture size for indoor convective turbulence,"," Optics Communications, , Vol. 277, No. 2, , 241-246, , 2007..
doi:10.1016/j.optcom.2007.05.018

18. Alim, E. Ngo Nyobe, E. Pemha, and , "Theoretical prediction and experimental validation of the angle-of-arrival probability density of a laser beam in a strong plane-flame turbulence," Optics Communications, , Vol. 283, No. 9, 1859-1864, 2010.
doi:10.1016/j.optcom.2009.12.033

19. Pemha, , E., B. Gay, and A. Tailland, , "Measurement of the di®usion coe±cient in a heated plane airstream," Physics of Fluids A, Vol. 5, No. 6, 1289-1295, , 1993.
doi:10.1063/1.858565

20. Ngo Nyobe, E., E. Pemha, and , "Shape optimization using genetic algorithms and laser beam propagation for the determination of the diffusion coe±cient in a hot turbulent jet of air," Progress In Electromagnetic Research B, Vol. 4, 211-221, 2008.
doi:10.2528/PIERB08010605

21. Ngo Nyobe, E., E. Pemha, and , "Propagation of a laser beam through a plane and free turbulent heated air flow; determination of the stochastic characteristics of the laser beam random direction," and some experimental results, Vol. 53, 31-53, 2005.

22. Hona, , J., E. Ngo Nyobe, and E. Pemha, "Experimental technique using an interference pattern for measuring directional °uctuations of a laser beam created by a strong thermal turbulence," Progress In Electromagnetics Research, , Vol. 84, No. 306, 289, 2008.
doi:10.2528/PIER08072803

23. Born, M., E. Wolf, and , Principles of Optics: Electromagnetic Theory of Propagation, Interference and Di®raction of Light, 7th Ed., Cambridge University Press, 1999..

24. Gagnaire, , A., A. Tailland, and , "Interferometrical setup for the study of thermic turbulence in a plane air stream," Proceedings of SPIE,, Vol. 136, , 69-73, 1997.

25. Kolmogorov, , A. N., "The local structure of turbulence in incompressible viscous °uids for very large Reynolds number," Turbulence Classic Papers on Statistical Theory, S. K. Friedlander and L. Topper, Eds., Wiley-Interscience,, 151-155, 1961.

26. Abramowitz, , A., I. A. Stegun, and , A Handbook of Mathematical Functions, , 1964..

27. Davis, , P. J., P. Rabinowitz, and , "Methods of Numerical Integration," Academic Press, , 1975.

28. Weiss, A., "Determination of thermal stratification and turbulence of the atmospheric surface layer over various types of terrain by optical scintillometry," Ph.D. Thesis,, No. Swiss, 2002.

29. Meijninger, W. M. L., , "Surface fluxes over natural landscapes using scintillometry," Ph.D. Thesis, Wageningen University, , 2003..