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Abstract—Using the geometrical optics approximation, a theoretical
prediction of the deflection angle correlation of a laser beam
propagating in a hot turbulent jet is found as a functional form of the
turbulent spectrum of the refractive index fluctuations. By applying
the modified Von Karman model and Tatarskii model, the structure
coefficient of the refractive index and the deflection angle correlation of
the laser beam are then computed by means of a numerical procedure.
Experiments to measure the structure coefficient are performed. A
good agreement between the experimental results obtained and the
theoretical predictions demonstrates the validity of the theoretical
approach.

1. INTRODUCTION

The propagation of light in turbulent media has been the subject of
research for the past forty years, notably for the cases in which the
turbulent medium considered is the atmosphere [1–3]. This topic
is of an increasing interest because of the important role of laser
beams in a wide range of modern technological applications, such
as electromagnetic transmissions [4] in optical systems and in the
atmosphere [5], satellite communication [6], medical diagnostics [7–
10], and diagnostic techniques of turbulence [11] in heated turbulent
media and in combustion chambers.
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When a laser beam is sent into a heated turbulent medium,
the refractive index in the medium undergoes random fluctuations
called optical turbulence induced by the temperature fluctuations
in the medium. This causes random deflections of the laser beam,
generates random phase modulations in the laser beam wave front,
and then creates random fluctuations of the light wave amplitude
by the diffraction process. Many papers have been devoted to the
study of phase and intensity fluctuations of the laser beam in random
media [12] and other studies have been carried out the possibility
of using the fractional moments [13], or the methods for solving
the parabolic equation of moments [14]. It is well known that
the directional fluctuations of the laser beam are more suitable for
studying turbulence because they are very sensitive to turbulence
inhomogeneities. Consequently, many scientists [15–17] are making
increasing use of information coming from deflection angle fluctuations
of laser beams inside turbulent media to extract information about
turbulence. In our previous investigations [18–22], we have done
works in connection with the angular fluctuations of laser beams
in random media. More precisely, the angle-of-arrival probability
density of a laser beam in a strong plane-flame turbulence has been
determined theoretically and experiments have been performed to
confirm theoretical results [18]. The diffusion coefficient of a heated
air stream which is correlated to the deflection angle fluctuations
of a laser beam has been determined using an optical technique
coupled with an optimization approach [19, 20]; for the same jet, the
stochastic properties of the random direction of a laser beam have been
studied [21]. The temporal spectrum of the laser beam angle-of-arrival
is measured by means of an experimental technique which utilizes an
interference pattern to separate directional fluctuations of the laser
beam [22]. More recently [11], a genetic algorithm technique based on
the directional fluctuations of a laser beam in a hot turbulent jet of
air has been performed for the extraction of local information about
thermal turbulence in the jet without introducing any probe into the
flow.

In this paper, we study the correlations of the deflection angle
fluctuations of a single laser beam propagating through a hot turbulent
jet of air. The theory we elaborate is the same for any random medium.
To obtain some results, we assume the experimental conditions we have
applied in our previous works for the hot turbulent jet of air, which we
have considered as the turbulent medium. The results presented in this
paper will be used later to extract information on turbulence in the
jet, using the correlations of deflection angles of the laser beam. For a
better understanding of this work, the rest of this paper consists of six
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sections. In Section 2, the problem under study is stated. Section 3 is
devoted to the theoretical approach we have developed to determine
the correlation functions of the laser beam deflection angles, in terms
of the correlations of refractive index fluctuations. In Section 4, the
completed theoretical results are obtained by applying the models of
turbulence spectrum, notably the Karman and Tatarskii models. The
numerical procedure we have applied is described in Section 5: by
using the value of the diffusion coefficient published in a previous
paper, the structure coefficient of the refractive index fluctuations is
computed and the values of the deflection angle correlation of the laser
beam are deduced. In Section 6, experiments which enable to measure
the structure coefficient are preformed and a good agreement between
the experimental measurements and the theoretical results is observed.
Conclusion is given in the last Section.

2. STATEMENT OF THE PROBLEM

Let us consider a single laser beam which propagates through a hot
turbulent jet of air. To study the propagation of the laser beam, we
define a Cartesian coordinate system with three unit vectors (x, y, z).
The x axis is the unperturbed direction of the laser beam, that is, its
direction before entering into the turbulent medium; and the plane (y,
z) is perpendicular to the x axis. When investigating the properties
of the fluctuations of the laser beam deflection angles or studying
any stochastic process in connection with the directional fluctuations
of the laser beam in a turbulent medium, one has to study the
phase fluctuations of the laser beam, or apply the geometrical optics
approximation [23] used here. We assume that the laser beam remains
sufficiently narrow along its whole path such that the diffraction effects
are negligible compared to the refraction effects. This occurs when the
following four conditions are met [18–22]:

— The incident wavelength λ0 of the unperturbed laser beam
radiation is very small, compared to the inner scale Li of the turbulent
inhomogeneities in the hot jet (Li = 1 mm [24]).

— The whole path distance X traversed by the laser beam is very
great, compared to the outer scale L0 of the turbulent inhomogeneities
(L0 = 10 mm [19, 24]).

— The size of the first Fresnel zone
√

λ0X is smaller than the
inner scale Li.

— The laser beam intensity fluctuations are neglected.
For the values of Li and L0 used here, we assume the experimental

conditions we have applied in our previous papers [11, 19–21] about
experiments for which a hot turbulent jet of air is considered as the
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turbulent medium. These conditions are the same as those encountered
in experiments carried out by Gagnaire and Tailland [24] for the same
turbulent jet. So, we are allowed to use the measured values of the
inner and outer scales they have obtained by means of the cold-wire
anemometer technique.

Under the geometrical optics approximation, the random
propagation of the laser beam may be approximated as a geometric
walk process, that is, a walk process in which the laser beam undergoes
only changes in direction such that the light beam can be regarded as a
laser ray. Let ε(M, t) be the random deflection angle of the laser beam
defined from its unperturbed direction, at time t, for any point M of
its trajectory in the medium. The purpose of this paper is to calculate
the spatio-temporal correlation function Rεε = ε(M1, t1)ε(M2, t2) of
the laser beam deflection angles, corresponding to two points M1 and
M2, situated on the laser beam trajectory, at the instants t1 and t2
respectively (t1 < t2).

3. DETAILED APPROACH FOR THE CALCULATION
OF THE CORRELATION OF DEFLECTION ANGLES
OF THE LASER BEAM IN A TURBULENT MEDIUM

Since the geometrical optics approximation is assumed to be valid, let
us write the ray equation:

d(nτ )
ds

= ∇µ (1)

where ∇ denotes the gradient vector, τ the unit vector tangent to the
ray trajectory, s the arc length of the ray curve, and µ the fluctuation
of the refractive index n around its mean value n̄.

We assume that the ambient medium is at rest and that its
refractive index n0 remains constant. Under this condition, the
laser beam direction τ0 at the entry point O is assumed to be the
unperturbed direction x. Integrating Equation (1) along the laser
beam trajectory, situated between the entry point O and a given point
M defined in the medium, we obtain the following relation for any
time t:

nτ (M, t) =
∫∫∫ M

O
∇µds + n0τ0 (2)

By using the vector product, this equation can be multiplied by x and
then gives:

nτ (M, t)× x =
∫∫∫ M

O
(∇µ)× xds (3)
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Figure 1. Scheme of two arbitrary paths of the laser beam used for
determining the correlation functions of the light ray deflection angles:
these functions are calculated for any observation plane perpendicular
to the unperturbed laser beam direction.

We then introduce the unit vector u perpendicular to the plane (x,
τ ) and defined as: u(M, t) = (τ × x)/|τ × x|. By taking into account
the fact that the laser beam deflection angle ε is small (sin ε ≈ ε), we
obtain the following relation:

nε(M, t)u(M, t) =
∫∫∫ M

O
(∇µ)× x ds (4)

which is equivalent to:

nε(M, t)u(M, t) =
∫∫∫ M

O

(
−∂µ(P )

∂y
z +

∂µ(P )
∂z

y
)

ds (5)

where P is an arbitrary point situated on the laser beam trajectory,
between the entry point O and given point M .

Let us consider two points M1 (X1, Y1, Z1) and M2 (X2, Y2,
Z2) situated on two arbitrary trajectories of the laser beam and
corresponding to two arc lengths s1 and s2 of the ray curve, as shown
in Figure 1. By writing Equation (5) for M1 and M2, we derive two
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similar equations which can be multiplied; this gives:

[(n̄ + µ1)ε1(X1, Y1,Z1, t1)][(n̄ + µ2)ε2(X2, Y2, Z2, t2)](u1 · u2)

=
∫∫∫ M1

O

∫∫∫ M2

O

(
−∂µ1(P1, t1)

∂y1
z +

∂µ1(P1, t1)
∂z1

y
)

(
−∂µ2(P2, t2)

∂y2
z +

∂µ2(P2, t2)
∂z2

y
)

ds1ds2 (6)

where P1(x1, y1, z1) and P2(x2, y2, z2) are two arbitrary points situated
on the trajectories (OM1) and (OM2) of the same laser beam, between
O and M1, and between O and M2, respectively.

In the left-hand side of Equation (6), one has to neglect the
quantities whose the orders of magnitude are very small compared
to that of ¯(n)2ε1(X1, Y1, Z1, t1)ε2(X2, Y2, Z2, t2), that is, the quantities
of third order n̄µ1ε1ε2, n̄µ2ε1ε2, and that of fourth order µ1µ2ε1ε2; in
addition, the scalar product u1 ·u2 can be approximated to ±1 because
the smallness of the deflection angles of the laser beam along its whole
path induces the smallness of the angle between the directions of the
unit vectors u1 and u2.

In the right hand side of Equation (6), we apply the following
identity which is justified by the fact that the points P1 and P2 are
independent, that is:

∂µ1(P1)
∂y1

∂µ2(P2)
∂y2

=
∂

∂y1

[
µ1(P1)

∂µ2(P2)
∂y2

]

=
∂

∂y1

[
∂

∂y2
(µ1(P1)µ2(P2))

]
=

∂2

∂y1∂y2
[µ1(P1)µ2(P2)] (7)

Let dx1 and dx2 be the projections of the curvilinear displacements
ds1 and ds2 situated on the x axis. Since we have: dx1 = ds1 cosα1

and dx2 = ds2 cosα2 (α1 and α2 are the laser beam deflection angles
at points P1 and P2 respectively), the quantities ds1 and ds2 are nearly
equal to dx1 and dx2 respectively. This approximation holds because
of the smallness of the laser beam deflection angles.

So, by averaging the resulting equation and by setting: τ = t2−t1,
we obtain the following relation which represents the connection
between the correlation function Rεε = ε1ε2 of the laser beam
deflection angles, and the correlation function Rµµ = µ1µ2 of the
refractive index fluctuations, that is:

Rεε(X1, X2, Y1, Y2, Z1, Z2, τ)

= ± 1
(n̄)2

∫∫∫ s1

0

∫∫∫ s2

0
(∇a1 ·∇a2) Rµµ(x2−x1, y2−y1, z2−z1, τ)dx1dx2 (8)
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In the above equation, ∇a1 and ∇a2 are the transversal gradients
defined from the points P1 and P2 as follows:

∇a1 = y
∂

∂y1
+ z

∂

∂z1
, ∇a2 = y

∂

∂y2
+ z

∂

∂z2
(9)

Let us introduce the transversal vector a defined from the vectors P1P2

by the relation: P1P2 = (x2 − x1)x + a, that is: a = a2 − a1 =
(y2 − y1)y + (z2 − z1)z; this gives:

∇a1 · ∇a2 = − (∇a)2 (10)
Hence, by applying the relation defined in Equation (10) and
performing the integration defined in Equation (8), we obtain the
following result:

Rεε(X1, X2, ρ, τ)=
1

(n̄)2

∣∣∣∣∣
∫∫∫ X1

0

∫∫∫ X2

0

[
(∇a)2Rµµ(x2−x1,a, τ)

]
a=ρ

dx1dx2

∣∣∣∣∣(11)

where ρ = ρ2 − ρ1 = (Y2 − Y1)y + (Z2 − Z1)z is the transversal
vector defined from the vector M1M2 by the relation: M1M2 =
(X2 −X1)x + ρ.

To simplify the result obtained in Equation (11), we use the fact
that Rµµ depends on the variable (x2 − x1), as it is shown in this
equation. This suggests making a change of variables as follows:

x = x2 − x1 (12a)
x0 = (x1 + x2)/2 (12b)

The integration defined in Equation (11) can then be transformed as
a simple integration and gives the following result:

Rεε(X1, X2, ρ, τ)=
(X1 + X2)

2 (n̄)2

∣∣∣∣∣
∫∫∫ X2

−X1

[
(∇a)2Rµµ(x,a, τ)

]
a=ρ

dx

∣∣∣∣∣ (13)

Let us consider the practical case usually encountered in
experimental applications, that is, the case for which the correlations
of the laser beam deflection angles are observed at the detector plane,
which is a transversal plane perpendicular to the unperturbed direction
of the laser beam. The given points M1 and M2 used for evaluating the
laser beam deflection angles are then situated on this observation plane
supposed to be placed at a distance X from the entry point of the laser
beam (See Figure 1). Hence, by setting X1 = X2 = X, and using the
fact that correlations are even functions, we derive from Equation (13),
the following result connecting the correlations Rεε and Rµµ:

Rεε(X, ρ, τ) =
2X

(n̄)2

∣∣∣∣∣
∫∫∫ X

0

[
(∇a)2Rµµ(x,a, τ)

]
a=ρ

dx

∣∣∣∣∣ (14)
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Since the parameter τ is defined as the time duration between the
instants of measurements carried out at the points M1 and M2,
the value of this quantity should be arbitrarily imposed by the
experimenter, as in conventional cases. However, for the spatio-
temporal correlation functions Rεε and Rµµ defined above, this value
does not depend on the experimenter because it has the same order of
magnitude as the time that light would take to travel between points
M1 and M2. So, the value of τ is very small and a series expansion
in terms of powers of τ may then be done for the correlation function
Rµµ, that is:

µ1(P1, t1)µ2(P2, t1 + τ) = µ1(P1, t1)µ2(P2, t1) + τµ1(P1, t1)
∂µ2

∂t
(P2, t1)

+
τ2

2
µ1(P1, t1)

∂2µ2

∂t2
(P2, t1)+

τ3

6
µ1(P1, t1)

∂3µ2

∂t3
(P2, t1)+ . . . (15)

We need to determine the orders of magnitude of the quantities written
in the right hand side of Equation (15). For this, we define ti as the
smallest timescale of the turbulence, that is, the Kolmogorov timescale.
The order of magnitude of ti is Li/υ where υ is the Kolmogorov velocity
scale and Li the inner scale of the turbulence. By using the well-known
Kolmogorov relation [25]:

υLi

ν
= 1 (16)

where ν denotes the kinematic viscosity (ν = 15.3 × 10−6 m2/s for
the jet considered), one can deduce that the order of magnitude of ti
is L2

i

/
ν = 0.065 s. Since the order of magnitude of τ is L0/c where

L0 represents the outer scale of the turbulence and c the velocity of
light (L0/c ≈ 0.033× 10−10 s), we derive that the orders of magnitude
of the quantities mentioned in the right hand side of Equation (15)

are respectively: µ2,
(

L0c−1

ti

)
µ2,

(
L0c−1

ti

)2
µ2,

(
L0c−1

ti

)3
µ2. So, the

second, third, and the fourth quantities in the right hand side of
Equation (15) are very small compared to µ1(P1, t1)µ2(P2, t1). We
then find that the following approximation may be applied:

µ1(P1, t1)µ2(P2, t1 + τ) ≈ µ1(P1, t1)µ2(P2, t1) (17)

This leads to conclusion that the spatio-temporal correlations of the
laser beam deflection angles in a turbulent jet can be regarded as
spatial correlations for all experimental processes in which the time
duration between the measurements of the deflection angles at the
correlation points is very small compared to the Kolmogorov timescale.
In the rest of this work, we assume that this condition is satisfied.
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Therefore, we are allowed to omit the parameter τ among the variables
on which depend the correlation functions Rµµ and Rεε.

As suggested by Tatarskii [1], we assume that the hypothesis of
local isotropy and homogeneity is valid, that is: Rεε(X, ρ) = Rεε(X, ρ)
and Rµµ(r) = Rµµ(r), with ρ = |ρ| and r = |r| =

√
x2 + ρ2. We then

obtain the following relation:

Rεε(X, ρ) =
2X

(n̄)2

∣∣∣∣∣
∫∫∫ X

0

[
ρ2

r2

d2Rµµ(r)
dr2

+
(

2
r
− ρ2

r3

)
dRµµ(r)

dr

]
dx

∣∣∣∣∣ (18)

The relation we have obtained in Equation (18) enables to calculate
the correlations of the laser beam deflection angles if the correlations
of the refractive index fluctuations are known.

4. COMPLETED FORMULAS BY APPLYING THE
MODELS OF TURBULENCE

To apply the correlation functions Rµµ(r) of the refractive index
fluctuations in Equation (18), we need to know the spectrum of
turbulence in the heated medium, that is, the function φµ(K) which
depends on the wave number K and is connected to Rµµ(r) by the
well-known relation [1]:

Rµµ(r) = 4π

∫∫∫ ∞

0
Kφµ(K)

(
sin(Kr)

r

)
dK (19)

By using Equation (19), we obtain for any position X of the observation
plane, the final expression of Rεε(X, ρ):

Rεε(X, ρ) =
8π

(n̄)2
X

∣∣∣∣∣
∫∫∫ X

0

(∫∫∫ ∞

0
Kφµ(K)f(K, x, ρ)dK

)
dx

∣∣∣∣∣ (20)

where the function f(K, x, ρ) is defined as:

f(K, x, ρ) =
(

K2ρ2 + 2
r3

− 3ρ2

r5

)
sin(Kr)+

(
3Kρ2

r4
− 2K

r2

)
cos(Kr) (21)

An equivalent equation for the definition of f(K,x, ρ) can be derived
by using the spherical Bessel functions of first kind jm [26]. This gives:

f(K,x, ρ) =
2K2

r
j1(Kr)− K3ρ2

r2
j2(Kr) (22)

To calculate Rεε(X, ρ) from Equation (20), we need for practical
reasons, to introduce the following non dimensional variables: σ =
K/Km, σ0 = K0/Km, ξ = Kmx, η = Kmρ, and p = Kmr =

√
ξ2 + η2.
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The wave numbers K0 = 1/L0 and Km = 5.92/Li are the two limits
of the inertial zone of turbulence, L0 and Li being the outer and inner
scales of the turbulence respectively.

Moreover, for usual experimental conditions, the observation plane
is placed at a distance X very large compared to the correlation
distance of the refractive index fluctuations. This enables the renewal
of the optical turbulence for a great number of times before reaching the
observation plane, in order to obtain reliable measurements evaluated
at this plane. Hence, the upper limit of the integration defined in
Equation (20) can be extended to infinity.

From Equation (20), we find that the correlation function Rεε

is given by the following relation using the above non dimensional
variables:

Rεε(X, η) =
8π

(n̄)2
K4

mX

∣∣∣∣
∫∫∫ ∞

0

(∫∫∫ ∞

0
σφµ(σ)

((
σ2η2 + 2

p3

)
sin(pσ)

+
(

3ση2

p4
− 2σ

p2

)
cos(pσ)

)
dσ

)
dξ

∣∣∣∣ (23)

where φµ(σ) is the dimensionless expression of φµ(K).

4.1. The Von Karman Model

To model the spectrum of turbulence for the refractive index
fluctuations, we assume the classical hypothesis of the Kolmogorov
spectrum [25] which reveals a −11/3 power law for the inertial zone
of turbulence, but does not give satisfactory results for small wave
numbers. To define the turbulence spectrum valid for all wave
numbers, one usually needs to complete the Kolmogorov spectrum for
small values of the wave number. This enables to obtain the more
completed model called the Von Karman spectrum, and defined by the
following relation [3, 15]:

φµ(K) = 0.033C2
µ

(
K2 + K2

0

)−11/6 exp
(
−K2

K2
m

)
(24a)

which is equivalent to the non-dimensional form:

φµ(σ) = 0.033C2
µK−11/3

m

(
σ2 + σ2

0

)−11/6 exp
(−σ2

)
(24b)

In Equations (24a) and (24b), C2
µ is the structure coefficient of the

refractive index fluctuations in the turbulent medium.
By using Equation (24b), the result obtained in Equation (23)

becomes:

Rεε(X, η) =
0.264π

(n̄)2
C2

µK1/3
m X

∣∣∣∣
∫∫∫ ∞

0
φ1(ξ, η)dξ

∣∣∣∣ (25)
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where the function φ1(ξ, η) is defined as follows:

φ1(ξ, η) =
∫∫∫ ∞

0
σ

(
σ2 + σ2

0

)−11/6

exp
(−σ2

)[(σ2η2 + 2
p3

− 3η2

p5

)
sin(pσ)+

(
3ση2

p4
− 2σ

p2

)
cos(pσ)

]
dσ (26)

4.2. The Tatarskii Model

This model is less realistic than the model of Von Karman because it
does not take into account the existence of the outer scale of turbulence
L0, that is, the lower limit K0 of the inertial zone of the turbulence
spectrum. The Tatarskii model is deduced from the Von Karman
model by setting: K0 = 0. So, it is defined as [1]:

φµ(K) = 0.033C2
µK−11/3 exp

(
−K2

K2
m

)
(27a)

that is:
φµ(σ) = 0.033C2

µK−11/3
m σ−11/3 exp

(−σ2
)

(27b)
By using Equation (27b), Equation (23) gives:

Rεε(X, η) =
0.264π

(n̄)2
C2

µK1/3
m X

∣∣∣∣
∫∫∫ ∞

0
φ2(ξ, η)dξ

∣∣∣∣ (28)

where the function φ2(ξ, η) is defined as:

φ2(ξ, η) =
∫∫∫ ∞

0
σ−8/3 exp

(−σ2
) [(

σ2η2 + 2
p3

− 3η2

p5

)
sin(pσ)

+
(

3ση2

p4
− 2σ

p2

)
cos(pσ)

]
dσ (29)

5. NUMERICAL RESULTS: CALCULATION OF THE
STRUCTURE COEFFICIENT OF REFRACTIVE INDEX
FLUCTUATIONS AND DEDUCTION OF CORRELA-
TIONS OF THE LASER BEAM DEFLECTION ANGLES

The method which enables to determine the structure coefficient of the
refractive index fluctuations for the hot turbulent jet uses the diffusion
coefficient. Introduced by Chernov [2], this coefficient is usually noted
by Dµ. It was calculated in our previous works [11, 19–21] and is
connected to the variance of the laser beam deflection angle, according
to the Chernov law [2]:

ε2 =
4

(n̄)2
DµX (30)
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where Dµ is defined as [2, 11, 19–21]:

Dµ = −1
2

∫∫∫ ∞

0
∇2Rµµ(r, 0, 0)dr = −

∫∫∫ ∞

0

1
r

(
dRµµ(r, 0, 0)

dr

)
dr (31)

It should be explicitly stated that:

ε2 = Rεε(X, η = 0) =
0.264π

(n̄)2
C2

µK1/3
m X

∣∣∣∣
∫∫∫ ∞

0
φ(ξ, 0)dξ

∣∣∣∣ (32)

where the function φ is equal to φ1 or φ2 for the Karman and Tatarskii
models, respectively.

The result we have obtained in Equation (32) shows that the
variance of the laser beam deflection angles is proportional to the
propagation distance X; this agrees with the Chernov law. In addition,
we deduce from Equations (30) and (32) that the structure coefficient
C2

µ is given by the following relation:

C2
µ =

Dµ

0.066πK
1/3
m

∣∣∫∫∫∞
0 φ(ξ, 0)dξ

∣∣ (33)

For numerical calculations, all integrations are performed by
means of the Simpson algorithms [27], and for the results thus obtained,
the convergence requirements are ensured. The integration interval
along the ξ axis, whose length is represented by δ, is then discretized
in (N+1) small intervals of same length ∆ξ such that ∆ξ/δ = 10−4. So,
the well-known [27] condition of convergence ∆ξ/δ ≤ 10−2 is satisfied.
Since the upper limit of the Von Karman spectrum corresponds to
the value σ = 1, the integrations extended to infinity and defined in
Equations (26) and (29) can be computed in the interval [0, σm] such
that σm À 1. This interval is then discretized in (M+1) small intervals
of same length ∆σ such that ∆σ/σm = 10−4.

In all numerical processes, we need the quantity φ0 = φ(ξ = 0, η =
0); but this value cannot be directly calculated because the function
φ(ξ, η) presents a singularity for ξ = η = 0. For this, we apply a Taylor
series expansion of φ in the neighbourhood of the point ξ = 0. After
integration, we find the following result:

— for the Von Karman model

φ0 = φ1(ξ = 0, η = 0)

=
2
3

∫∫∫ ∞

0
σ4

(
σ2 + σ2

0

)−11/6 exp
(−σ2

)
dσ = 0.4440 (34)

— for the Tatarskii model.

φ0 = φ2(ξ = 0, η = 0) =
2
3

∫∫∫ ∞

0
σ1/3 exp

(−σ2
)
dσ = 0.4471 (35)
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In Table 1, we present the values of the quantities A1 =∫∫∫ KmX
0 φ1(ξ, 0)dξ and A2 =

∫∫∫ KmX
0 φ2(ξ, 0)dξ as functions of X, and this

is a demonstration that A1 and A2 converge as X increases. These
quantities are needed in Equations (25) and (28) for the derivation
of the correlation curves. From the values presented in Table 1, the
convergence curves of the quantities A1 and A2 are plotted in Figure 2.
These curves show that for X ≥ 50mm, A1 converges to 2.94 and A2

converges to 3.42.
To obtain numerical results by applying Equations (25), (28)
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Propagation distance (mm) 

(A1)

(A2)

300

Figure 2. Convergence curves of the quantities A1(X) =∫∫∫ KmX
0 φ1(ξ, 0)dξ and A2(X) =

∫∫∫ KmX
0 φ2(ξ, 0)dξ as X increases.

A1(∞) = 2.94 and A2(∞) = 3.42 for the Karman and Tatarskii models
respectively.

Table 1. Values of the quantities A1(X) =
∫∫∫ KmX

0 φ1(ξ, 0)dξ and
A2(X) =

∫∫∫ KmX
0 φ2(ξ, 0)dξ: Convergence of A1 and A2 as X increases.

X (mm) 5 10 20 30 40 50
A1 2.63 2.82 2.91 2.94 2.95 2.94
A2 2.79 3.10 3.33 3.42 3.44 3.42

X (mm) 100 150 200 250 300
A1 2.94 2.94 2.94 2.94 2.94
A2 3.42 3.42 3.42 3.42 3.42
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and (33), one needs the value of the diffusion coefficient Dµ of the
turbulent medium, since the limits of the inertial zone of turbulence
K0 = 1/L0 and Km = 5.92/Li are known. For this, we use the best
result (Dµ = 2.18 × 10−9 m−1) we have found [11], among the values
calculated in our previous works. Hence, by using the computed values
of the quantities A1 and A2, we have obtained the following result from
Equation (33): C2

µ = 1.97×10−10 m−2/3 and C2
µ = 1.70×10−10 m−2/3,

for the Karman and Tatarskii models, respectively.
The computed values of C2

µ are then used in Equations (25) and
(28) for evaluating the correlation functions Rεε of deflection angles of
the laser beam, by setting n̄ = 1 for the air of the jet. The results we
have thus obtained are plotted in Figure 3 for the Karman model and,
in Figure 4 for the Tatarskii model, for four values of the propagation
distance: X = 50 mm, 100mm, 200 mm, and 300 mm. To compare
the results obtained from the two models, we need to plot in the same
figure the correlation function of deflection angles of the laser beam,
computed from the two models, for a given propagation distance. This
is done in Figure 5 for X = 200 mm. This figure demonstrates that the
values of the correlation function of the laser beam deflection angles
obtained from the Tatarskii model (RT

εε(X, η)) are greater than those
given by the Karman model (RK

εε(X, η)). To evaluate the difference

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x 10
-7

(a)

(b)

(c)

(d)

R

= Km

(a) X = 50 mm 

(b) X = 100 mm 

(c) X = 200 mm 

(d) X = 300 mm εε

η ρ

Figure 3. Correlation functions of the laser beam deflection angles
in the turbulent jet of air (Karman model) as function of η = Kmρ,
for four values of the propagation distance: (a) X = 50mm; (b) X =
100mm; (c) X = 200 mm; (d) X = 300 mm.
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Figure 4. Correlation functions of the laser beam deflection angles
in the turbulent jet of air (Tatarskii model) as function of η = Kmρ,
for four values of the propagation distance: (a) X = 50mm; (b) X =
100mm; (c) X = 200 mm; (d) X = 300 mm.
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Figure 6. The difference between the correlation function of the laser
beam deflection angles derived from the Karman and Tatarskii models
plotted as function of the propagation distance.

between both models, we consider the quantity Eεε defined as:

Eεε(X) =
∫∫∫ ∞

0

(
RT

εε(X, η)−RK
εε(X, η)

)
dη (36)

Figure 6 shows that Eεε increases linearly as function of the
propagation distance. This was expected because the correlations
obtained from the models are linear functions of the propagation
distance.

6. VALIDATION PROCESS OF THE COMPUTED
RESULTS: EXPERIMENTS FOR THE MEASUREMENT
OF STRUCTURE COEFFICIENT OF THE REFRACTIVE
INDEX FLUCTUATIONS IN HOT TURBULENT JET

In the view of validating the results we have obtained, we carry out
experiments in which we measure the structure coefficient C2

µ of the
refractive index for the jet considered, and compare the experimental
result to the theoretical values achieved in Section 5.

To measure C2
µ, one might apply the scintillometer technique. It is

a well-known powerful method that many scientists [28, 29] are making
increasing use for the measurement of C2

µ in a turbulent atmosphere.
This laser-based technique uses a photoelectric cell which enables to
find C2

µ from the measurement of the intensity fluctuations of a laser
beam transecting the turbulent medium, and the results are all the
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more accurate as the intensity fluctuations of the laser beam are strong.
For this, laser beams having large diameters (15 cm–30 cm) are usually
used and large distances of propagation (250 m–8.5 km) are applied,
such that the laser beams undergo important diffraction effects. Since
the geometrical optics approximation used in this work is not valid for
the scintillometer technique, we cannot exploit this technique for the
measurement of the structure coefficient C2

µ.
The technique that we have applied is one in which the

measurement of C2
µ is performed from the luminous trace produced

by a laser beam on the plane of a position photocell, after having
traversed the jet. More precisely, the experimental values of C2

µ are
deduced from the measurement of the probabilities of the positions of
the laser beam impact on the photocell.

The experimental setup already used in previous works [19–21]
is shown schematically in Figure 7. The laser beam (wavelength
λ0 = 6328A, initial diameter = 0.8mm) created from a 1 mW He-
Ne laser, is passed through a hot turbulent jet of air issued from a
rectangular nozzle of a wind tunnel. The nozzle aperture has the same
dimensions (200 mm × 47mm) as in [11, 24]. Assuming Gagnaire’s
experimental conditions [24], the unperturbed direction of the laser
beam is perpendicular to the jet exhaust, and is placed in the xy
plane (z = 0), at the distance y = d from the plane of the nozzle
aperture. Outside the jet, at a distance D from the outlet jet border,
the photocell is placed perpendicularly to the unperturbed direction of
the laser beam. The photocell transmits two electrical signals whose
amplitudes are proportional to the coordinates of the beam impact.
In the absence of the jet, the ambient medium is at rest; the laser
beam trajectory remains nearly rectilinear. In that case, the two
voltages derived from the photocell are adjusted to be equal to zero;
the corresponding beam impact which we have called “initial impact”
is taken to be the origin of the photocell plane, that is, the point
from which the transverse displacement of the laser beam impact is
measured. With the aim to obtain experimental results for various
values of the jet width traversed by the laser beam, the distance d
varies. For this, the mirror shown in Figure 7 moves parallel to itself
and for each position of the mirror, the position of the photocell is
adjusted such that it contains the same initial impact.

During propagation, the laser beam remains thin, and the
conditions which justify the applicability of the geometrical optics
approximation described in Section 2, are rigorously satisfied.

The measurement method for the probabilities P (y, z) of the
positions (y, z) of the laser beam impact on the photocell plane has
already been detailed in previous papers [19–21]. As explained in [19–
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Figure 7. Experimental setup for the measurement of the probabilities
of the positions of the laser beam impact on the photocell plane.
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21], the photocell plane is cross-ruled in 1600 small squares of the same
size c, defined as follows:

Y (j) = Y0 + j · c, j = 0, 1, . . . , jmax (jmax = 40) (37a)
Z(k) = Z0 + k · c, k = 0, 1, . . . , jmax (kmax = 40) (37b)

c = 0.01 cm (37c)
Y0 = Z0 = −0.20 cm (37d)

The quantity P (y, z) is the probability for the laser beam
impact centre (y, z) to be situated within the square ([Y (j), Y (j +
1)[; [Z(k), Z(k + 1)[). The lower limits (Y0, Z0) and the upper limits
(Y (jmax), Z(kmax)) are defined such that the entire measuring square
contains a set of 80× 80 small squares of same size c = 0.01 cm. After
having eliminated the points for which probabilities are equal to zero,
this initial square is reduced to the minimal square able to contain
the luminous trace produced by the laser beam on the photocell. The
final measuring domain in which statistical investigations are carried
out is then obtained as a square containing 40 × 40 small squares of
size c, and defined by: Y0 ≤ y ≤ Y (jmax) and Z0 ≤ z ≤ Z(kmax)
with Y0 = Z0 = −0.20 cm and Y (jmax) = Z(kmax) = 0.20 cm. So,
the above measuring process which does not reduce the accuracy of
measurements enables to deal with an optimal number of useful data
for statistical investigations.

The diameter (0.90 mm) of the laser beam footprint represents
22.5% of the size of the final measuring square. The surface occupied
by this footprint (0.63mm2) represents 4% of the surface of the final
measuring square.

By using a more powerful device, we have obtained more accurate
measurements: the interface enables to store 2 × (28 × 28) = 131072
impacts in approximately 20 seconds; this gives a time duration
τ = 1.52 × 10−1 ms between two successive stored impacts, which is
smaller compared to the Kolmogorov timescale ti = 0.065 s. So, we
can apply the approximation defined in Equation (17) which allows
considering the spatio-temporal correlations Rεε as spatial functions.

The values we have obtained for the probabilities P (Y, Z) are
plotted in Figures 8(a), 8(b), and 8(c). In Figures 9(a), 9(b), and 9(c)
the corresponding luminous trace produced by the laser beam on the
photocell are presented. The marginal probabilities deduced from the
probabilities P (Y, Z) are shown in Figures 10(a), 10(b), and 10(c) for
the Z coordinate, and in Figures 11(a), 11(b), and 11(c) for the Y
coordinate. The behaviour of these marginal probabilities is studied
as function of the jet width Xm and the curves obtained are presented
in Figures 12 and 13. The figures of the probabilities show clearly
that the central region of the plane of the photocell coincides with
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the region surrounding the initial impact of the laser beam. In this
area defined as the luminous trace produced by the laser beam on the
photocell (Figures 9(a), 9(b), 9(c)), one observes that the values of the
probabilities of the positions of the laser beam impact are not equal
to zero. In Figures 9(a), 9(b), 9(c), 12 and 13, it is shown that, as
the propagation distance traversed by the laser beam increases, the
maximum of the probabilities decreases whereas the surface of the
luminous trace increases. This phenomenon of diffusion of the laser
beam direction in the turbulent jet is consistent with the fact that the
sum of the probabilities must remain equal to 1, even if the propagation
distance varies.

To deduce the structure coefficient C2
µ from the measurement of

(a)

(b) (c)

Probabilities

Figure 8. Probabilities of the laser beam impact positions on the
plane of the photocell: (a) Xm = 200mm; (b) Xm = 300mm;
(c) Xm = 400 mm.
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(a)

(b) (c)

Figure 9. Luminous trace of the laser beam on the plane of the
photocell: (a) Xm = 200 mm; (b) Xm = 300mm; (c) Xm = 400 mm.

the probabilities, we exploit the formula which gives the variance of the
transverse displacement ρ of the laser beam in terms of the structure
coefficient of the refractive index fluctuations, the inner scale Li of the
turbulence, and the propagation distance X, that is [12, 16]:

ρ2 = 2.2C2
µX3L

−1/3
i (38)

The deflection angle of the laser beam being small, we can
assume [19] that the polar and azimuthal angles (φ, θ), which
characterize the laser beam direction at any point of its trajectory in
the turbulent jet, are nearly equal to the corresponding angles of the
position vector at the same point. Also, if (ym, zm) are the coordinates
of the laser beam impact on the outlet border of the jet corresponding
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to the width (x = Xm) of the jet, it can be shown that:

ym = Xm tanφ (39a)
zm = Xmcot θ/cosφ (39b)

It is obvious that the angles (φ, θ) are random functions which depend
on the propagation distance of the laser beam. But all possible values
of each angle belong to a set which remains unchanged because we
assume [19, 21] that it contains the same elements as the propagation
distance varies. In addition, we assume that the values of these
elements depend only on the laser beam impact position on the
photocell. Hence, the propagation of the laser beam being rectilinear
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Figure 10. Marginal probabilities of the Z coordinate of the laser
beam impact on the photocell: (a) Xm = 200 mm; (b) Xm = 300 mm;
(c) Xm = 400 mm.
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from the outlet jet border to the photocell, it can be demonstrated
that the transverse displacement ρm of the laser beam at the outlet of
the jet is connected to its transverse displacement ρcell measured on
the photocell plane, by the following relation:

ρm =
(

Xm

Xm + D

)
ρcell (40)

Applying Equation (38), the above relation gives:
(

Xm

Xm + D

)2

ρ2
cell = 2.2C2

µX3
mL

−1/3
i (41a)
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that is: (
1

Xm + D

)2

ρ2
cell =

(
2.2C2

µL
−1/3
i

)
Xm (41b)

Equation (41b) shows that the structure coefficient C2
µ of the refractive

index fluctuations can be found if the quantity ρ2
cell is known. Let us
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Figure 12. Comparison between the Z marginal probabilities as the
jet width varies.
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of the slope α and deduction of the structure coefficient C2
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define the quantity qm as follows:

qm =
(

1
Xm + D

)2

ρ2
cell (42)

Equation (41b) demonstrates that the values of qm vary as a linear
function of the width Xm of the jet, according to a straight line with
the slope α given by:

α =
(
2.2C2

µL
−1/3
i

)
(43)

To measure α, we need the marginal probabilities Pmar(Y ) and
Pmar(Z) of the coordinates Y and Z of the laser beam impact position
on the photocell. These probabilities are extracted from the measured
probabilities P (Y, Z) and are plotted in Figures 10(a), 10(b), 10(c),
and 11(a), 11(b), 11(c). The quantities qm are measured from the
variance of the transverse displacement ρ2

cell of the laser beam impact,
where ρ2

cell is given by :

ρ2
cell =

∫∫∫
Y 2Pmar(Y )dY +

∫∫∫
Z2Pmar(Z)dZ (44)

In Table 2, we present the values of qm obtained for different entry
points of the laser beam corresponding to three values of the jet width
Xm. The curve which represents the behaviour of qm as function of
Xm is shown in Figure 14. The slope α derived from this figure is:
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Table 2. Experimental values for the derivation of the quantity qm as
a function of the jet width Xm.

d (mm) D (mm) Xm (mm) ρ2
cell (10−3 mm2) qm (10−10)

121 600 200 0.56 8.90

200 650 300 1.12 12.50

280 695 400 1.97 16.50

Table 3. Comparison between the theoretical predictions and the
experimental measurement of the structure coefficient of the turbulent
jet.

Methods Tatarskii model Karman model Experiments

Values of C2
µ

(10−10 m−2/3 )
1.70 1.97 1.93

α = 4.26 × 10−12 mm−1. Hence, the value of the structure coefficient
C2

µ can be computed by using Equation (43). This gives:

C2
µ = 1.93× 10−10 m−2/3 (45)

To compare the theoretical predictions and the experimental values, we
summarize in Table 3 the values we have obtained for C2

µ. This table
shows that the value obtained from the Karman model is closer to the
experimental result than the value given by the Tatarskii model. This
was predictable because it is well known that Karman model is more
realistic than the Tatarskii model. The slight difference (2%) observed
between the value given by the Karman model and that obtained from
the experiments demonstrates the validity of the theoretical approach
we have achieved for the correlation of the laser beam deflection angles.

7. CONCLUSION

In this paper, we have found a theoretical approach which is based on
the geometrical optics approximation and determines the correlation
function of the laser beam deflection angles, in terms of the correlation
function of the refractive index fluctuations. By applying the Tatarskii
model and modified Von Karman model for the turbulence spectrum,
we have derived completed formulas. This enables to compute the
structure coefficient of the refractive index for the hot turbulent jet
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and to obtain the values of the correlation function of the laser beam
deflection angles.

To validate the theoretical predictions, an experimental setup and
a measurement method for the structure coefficient of the refractive
index are described. A good agreement between the measured
experimental value and the computed value obtained from the Karman
model, demonstrates the validity of the theoretical approach. The
results thus obtained will be used in subsequent works for the
prediction of the temporal spectrum of the laser beam angle-of-arrival,
and for the possibility of extracting information about turbulence in
the hot turbulent jet considered.
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