Vol. 129
Latest Volume
All Volumes
PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-06-13
Modeling of Optical Trapping Using Double Negative Index Fishnet Metamaterials
By
Progress In Electromagnetics Research, Vol. 129, 33-49, 2012
Abstract
We calculate the optical force exerted on the nanoparticle close proximity to the surface of fishnet metamaterials based on metal/dielectric/metal films when irradiated at near infrared wavelength. These forces show the resonant frequencies similar to the magnetic resonant frequencies in the double negative index fishnet metamaterial. We also present that the optical force can be enhanced by optimizing the geometry of the fishnet to provide a stronger magnetic resonant dipole. In contrast to the other plasmonic nanostructure always obtaining trapping force using electrical resonant dipole, our presented structure utilizes the magnetic resonance to provide a gradient force, which is suitable for the optical trapping of the nanoscale particles at illumination intensities of just 1 mW/μm2, the optical force is sufficient to overcome the Earth's gravitational pull.
Citation
Tun Cao, and Martin J. Cryan, "Modeling of Optical Trapping Using Double Negative Index Fishnet Metamaterials," Progress In Electromagnetics Research, Vol. 129, 33-49, 2012.
doi:10.2528/PIER12050309
References

1. Ashkin, A., J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Optics Letters, Vol. 11, No. 5, 288-290, 1986.
doi:10.1364/OL.11.000288

2. Roichman, Y., B. Sun, A. Stolarski, and D. G. Grier, "Influence of nonconservative optical forces on the dynamics of optically trapped colloidal spheres: The fountain of probability," Physical Review Letters, Vol. 101, No. 12, 128301(1-4), 2008.

3. MacDonald, M. P., G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature, Vol. 426, 421-424, 2003.
doi:10.1038/nature02144

4. Eriksson, E., J. Enger, B. Nordlander, N. Erjavec, K. Ramser, M. Goksor, S. Hohmann, T. Nystrom, and D. Hanstorp, "A microfluidic system in combination with optical tweezers fo analyzing rapid and reversible cytological alterations in single cells upon environmental changesr," Lab on a Chip, Vol. 7, 71-76, 2007.
doi:10.1039/b613650h

5. Yang, A. H. J., S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, "Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides," Nature, Vol. 457, 71-75, 2009.
doi:10.1038/nature07593

6. Mandal, S., X. Serey, and D. Eickson, "Nanomanipulation using silicon photonic crystal resonators," Nano Letters, Vol. 10, 99-104, 2010.
doi:10.1021/nl9029225

7. Roichman, Y., B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, "Optical forces arising from phase gradients," Physical Review Letters, Vol. 100, No. 1, 013602(1-4) 2008.

8. Karásek, V., T. Cizmár, O. Brzobohatý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, "Long-range one-dimensional longitu-dinal optical binding," Physical Review Letters, Vol. 101, No. 14, 143601(1-4), 2008.

9. Albaladejo, S., M. I. Marqués, M. Laroche, and J. J. Sáenz, "Scattering forces from the curl of the spin angular momentum of a light field," Physical Review Letters, Vol. 102, No. 11, 113602(1-4), 2009.

10. Ng, J., Z. F. Lin, and C. T. Chan, "Theory of optical trapping by an optical vortex beam," Physical Review Letters, Vol. 104, No. 10, 103601(1-4), 2010.

11. Novitsky, A., C. W. Qiu, and H. F. Wang, "Single gradientless light beam drags particles as tractor beams," Physical Review Letters, Vol. 107, No. 20, 203601(1-4), 2011.

12. Novotny, L., R. X. Bian, and X. S. Xie, "Theory of nanometric optical tweezers," Physical Review Letters, Vol. 79, No. 4, 645-648, 1997.
doi:10.1103/PhysRevLett.79.645

13. Quidant, R., D. Petrov, and G. Badenes, "Radiation forces on a Rayleigh dielectric sphere in a patterned optical near field," Optics Letters, Vol. 30, No. 9, 1009-1011, 2005.
doi:10.1364/OL.30.001009

14. Xu, H. and M. Kall, "Surface-plasmon-enhanced optical forces in silver nanoaggregates," Physical Review Letters, Vol. 89, No. 24, 246802(1-4), 2002.

15. Ishikawa, A., S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, "Deep subwavelength terahertz waveguides using gap magnetic plasmon," Physical Review Letters, Vol. 102, No. 4, 043904(1-4), 2009.

16. Choi, H., D. F. P. Pile, S. Nam, G. Bartal, and X. Zhang, "Compressing surface plasmons for nano-scale optical focusing," Optics Express, Vol. 17, No. 9, 7519-7524, 2009.
doi:10.1364/OE.17.007519

17. Nome, R. A., M. J. Guffey, N. F. Scherer, and S. K. Gray, "Plasmonic interactions and optical forces between au bipyramidal nanoparticle dimers," The Journal of Physical Chemistry A, Vol. 113, No. 16, 4408-4415, 2009.
doi:10.1021/jp811068j

18. Woolf, D., M. Loncar, and F. Capasso, "The forces from coupled surface plasmon polaritons in planar waveguides," Optics Express, Vol. 17, No. 22, 19996-20011, 2009.
doi:10.1364/OE.17.019996

19. Ambrosio, L. A. and H. E. Hernández-Figueroa, "Fundamentals of negative refractive index optical trapping: Forces and radiation pressures exerted by focused Gaussian beams using the generalized Lorenz-Mie theory," Biomedical Optics Express, Vol. 1, 1284-1301, 2010.
doi:10.1364/BOE.1.001284

20. Ambrosio, L. A. and H. E. Hernández-Figueroa, "Radiation pressure cross sections and optical forces over negative refractive index spherical particles by ordinary bessel beams," Applied Optics, Vol. 50, 4489-4498, 2011.
doi:10.1364/AO.50.004489

21., Ambrosio, L. A. and H. E. Hernández-Figueroa, "Spin angular momentum transfer from plane waves and azimuthally symmetric focused beams to negative refractive index spherical particles," Biomedical Optics Express, Vol. 2, 2354-2363, 2011.
doi:10.1364/BOE.2.002354

22. Ploschner, M., M. Mazilu, T. F. Krauss, and K. Dholakia, "Optical forces near a nanoantenna," Journal of Nanophotonics, Vol. 4, 041570(1-13), 2010.

23. Grigorenko, A. N., N. W. Roberts, M. R. Dickinson, and Y. Zhang, "Nanometric optical tweezers based on nanostructured substrates," Nature Photonics, Vol. 2, 365-370, 2008.
doi:10.1038/nphoton.2008.78

24. Righini, M., P. Ghenuche, S. Cherukulappurath, V. Myroshny-chenko, F. J. Garcia de Abajo, and R. Quidant, "Nano-optical trapping of rayleigh particles and escherichia coli bacteria with resonant optical antennas," Nano Letters, Vol. 9, No. 10, 3387-3391, 2009.
doi:10.1021/nl803677x

25. Tsuboi, Y., T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, "Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon," The Journal of Physical Chemistry Letters, Vol. 1, No. 15, 2327-2333, 2010.
doi:10.1021/jz100659x

26. Roxworthy, B. J., K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, "Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting," Nano Letters, Vol. 12, No. 2, 796-801, 2012.
doi:10.1021/nl203811q

27. Chen, H., L. Ran, J. Huangfu, X. M. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Magnetic properties of S-shaped split-ring resonators," Progress In Electromagnetics Research, Vol. 51, 231-247, 2005.
doi:10.2528/PIER04051201

28. Chen, H. S., L. Huang, and X. X. Cheng, "Magnetic properties of metamaterial composed of closed rings," Progress In Electromagnetics Research, Vol. 115, 317-326, 2011.

29. Zhang, S., W. Fan, K. J. Malloy, S. R. Brueck, N. C. Panoiu, and R. M. Osgood, "Near-infrared double negative metamaterials," Optics Express, Vol. 13, No. 13, 4922-4930, 2005.
doi:10.1364/OPEX.13.004922

30. Zhang, S., W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Physical Review Letters, Vol. 95, No. 13, 137404(1-4), 2005.

31. Zhang, S., W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Demonstration of metal-dielectric negative-index metamaterials with improved performance at optical frequencies," Journal of the Optical Society of America B, Vol. 23, No. 3, 434-438, 2006.
doi:10.1364/JOSAB.23.000434

32. Menzel, C., C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, "Retrieving effective parameters for metamaterials at oblique incidence," Physical Review B, Vol. 77, 195328(1-8), 2008.

33. Ourir, A., R. Abdeddaim, and J. de Rosny, "Tunable trapped mode in symmetric resonator designed for metamaterials," Progress In Electromagnetics Research, Vol. 101, 115-123, 2010.
doi:10.2528/PIER09120709

34. Oraizi, H., A. Abdolali, and N. Vaseghi, "Application of double zero metamaterials as radar absorbing materials for the reduction of radar cross section," Progress In Electromagnetics Research, Vol. 101, 323-337, 2010.
doi:10.2528/PIER10010603

35. Duan, Z., Y. Wang, X. Mao, W.-X. Wang, and M. Chen, "Experimental demonstration of double-negative metamaterials partially filled in a circular waveguide," Progress In Electromagnetics Research, Vol. 121, 215-224, 2011.
doi:10.2528/PIER11090502

36. Feng, T., Y. Li, H. Jiang, W. Li, F. Yang, X. Dong, and H. Chen, "Tunable single-negative metamaterials based on microstrip transmission line with varactor diodes loading," Progress In Electromagnetics Research, Vol. 120, 35-50, 2011.

37. Xu, S., L. Yang, L. Huang, and H. Chen, "Experimental measurement method to determine the permittivity of extra thin materials using resonant metamaterials," Progress In Electromagnetics Research, Vol. 120, 327-337, 2011.

38. Shao, J., H. Zhang, Y. Lin, and H. Xin, "Dual-frequency electromagnetic cloaks enabled by Lc-based metamaterial circuits," Progress In Electromagnetics Research, Vol. 119, 225-237, 2011.
doi:10.2528/PIER11052507

39. Zhou, H., F. Ding, Y. Jin, and S. He, "Terahertz metamaterial modulators based on absorption," Progress In Electromagnetics Research, Vol. 119, 449-460, 2011.
doi:10.2528/PIER11061304

40. Navarro-Cia, M., V. Torres Landivar, M. Beruete, and M. Sorolla Ayza, "A slow light fishnet-like absorber in the millimeter-wave range," Progress In Electromagnetics Research, Vol. 118, 287-301, 2011.
doi:10.2528/PIER11053105

41. Araujo, M. G., J. M. Taboada, J. Rivero, and F. Obelleiro, "Comparison of surface integral equations for left-handed materials," Progress In Electromagnetics Research, Vol. 118, 425-440, 2011.
doi:10.2528/PIER11031110

42. Giamalaki, M. I. and I. S. Karanasiou, "Enhancement of a microwave radiometry imaging system's performance using left handed materials," Progress In Electromagnetics Research, Vol. 117, 253-265, 2011.

43. Li, J., F.-Q. Yang, and J. Dong, "Design and simulation of L-shaped chiral negative refractive index structure," Progress In Electromagnetics Research, Vol. 116, 395-408, 2011.

44. Canto, J. R., C. R. Paiva, and A. M. Barbosa, "Dispersion and losses in surface waveguides containing double negative or chiral metamaterials," Progress In Electromagnetics Research, Vol. 116, 409-423, 2011.

45. Liu, S.-H. and L.-X. Guo, "Negative refraction in an anisotropic metamaterial with a rotation angle between the principal axis and the planar interface," Progress In Electromagnetics Research, Vol. 115, 243-257, 2011.

46. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011.

47. Li, M., H.-L. Yang, X.-W. Hou, Y. Tian, and D.-Y. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.
doi:10.2528/PIER10071409

48. Choi, J. and C. Seo, "High-effciency wireless energy transmission using magnetic resonance based on negative refractive index metamaterial," Progress In Electromagnetics Research, Vol. 106, 33-47, 2010.
doi:10.2528/PIER10050609

49. García-Meca, C., J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, "Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths," Physical Review Letters, Vol. 106, No. 6, 067402(1-4), 2011.

50. Zhao, R., P. Tassin, T. Koschny, and C. M. Soukoulis, "Optical forces in nanowire pairs and metamaterials," Optics Express, Vol. 18, No. 25, 25665-25676, 2010.
doi:10.1364/OE.18.025665

51. Zhang, J., K. F. MacDonald, and N. I. Zheludev, "Optical gecko toe: Optically controlled attractive near-field forces between plasmonic metamaterials and dielectric or metal surfaces," Physical Review B, Vol. 85, No. 20, 205123(1-5), 2012.

52. Ziolkowski, R. W., "Design, fabrication, and testing of double negative metamaterials," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 7, 1516-1529, 2003.
doi:10.1109/TAP.2003.813622

53. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Transactions on Instrumentation and Measurement, Vol. 19, No. 4, 377-382, 1970.
doi:10.1109/TIM.1970.4313932

54. Simovski, C. R., "Bloch material parameters of magnetodielectric metamaterials and the concept of Bloch lattices," Metamaterials, Vol. 1, 62-80, 2007.
doi:10.1016/j.metmat.2007.09.002

55. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coeffcients," Physical Review B, Vol. 65, No. 19, 195104(1-5), 2002.

56. Hao, J., L. Zhou, and M. Qiu, "Nearly total absorption of light and heat generation by plasmonic metamaterials," Physical Review B, Vol. 83, No. 16, 165107(1-12), 2011.