Vol. 24
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-06-01
The Effect of Power-Line Sagged Conductors on the Evaluation of the Differential Voltage in a Nearby Circuit at Ground Level
By
Progress In Electromagnetics Research M, Vol. 24, 209-220, 2012
Abstract
Overhead-line power conductors do not run parallel to the ground; they actually sag between adjacent towers, defining catenary curves. However, in the analysis of inductive coupling phenomena between power lines and neighboring circuits, the standard approach to deal with the sag effect is to assign a constant average height to power line conductors. The purpose of this research is to assess the accuracy of such an ordinary procedure. To do that, two different approaches are developed in order to more accurately account for the sag effect: a pure segmentation method, and a corrected segmentation method which takes into consideration the real curvature of the sagged conductors. The latter, and novel, approach is compared with the other options. Calculations presented in this work utilize magnetic vector potential as an analysis tool.
Citation
Jose Antonio Marinho Brandao Faria, "The Effect of Power-Line Sagged Conductors on the Evaluation of the Differential Voltage in a Nearby Circuit at Ground Level," Progress In Electromagnetics Research M, Vol. 24, 209-220, 2012.
doi:10.2528/PIERM12043005
References

1. Faria, J., "High frequency modal analysis of lossy non-uniform three-phase overhead lines taking into account the catenary effect," Euro. Trans. Electr. Power, Vol. 11, No. 3, 195-200, 2001.
doi:10.1002/etep.4450110307

2. Memari, A. R. and W. Janischewskyj, "Mitigation of magnetic field near power lines," IEEE Trans. Power Del., Vol. 11, 1577-1586, 1996.
doi:10.1109/61.517519

3. Dahab, A. A., F. K. Amoura, and W. S. Abu-Elhaija, "Comparison of magnetic-field distribution of noncompact and compact parallel transmission-line configurations," IEEE Trans. Power Del., Vol. 20, 2114-2118, 2005.
doi:10.1109/TPWRD.2005.848720

4. Budnik, K. and W. Machczynski, "Contribution to studies of the magnetic field under power lines," Euro. Trans. Electr. Power, Vol. 16, 345-354, 2006.
doi:10.1002/etep.90

5. Faria, J. and M. Almeida, "Accurate calculation of magnetic-field intensity due to overhead power lines with or without mitigation loops with or without capacitor compensation," IEEE Trans. Power Del., Vol. 22, 951-959, 2007.
doi:10.1109/TPWRD.2006.883025

6. Faria, J. and M. Almeida, "Computation of transmission line magnetic field harmonics," Euro. Trans. Electr. Power, Vol. 17, 512-525, 2007.
doi:10.1002/etep.143

7. Maung, N. and X.-B. Xu, "Broadband PLC radiation from a power line with sag," PIERS Online, Vol. 3, No. 6, 767-769, 2007.
doi:10.2529/PIERS060830095053

8. Al Salameh, M. S. H. and M. A. S. Hassouna, "Arranging overhead power transmission line conductors using swarm intelligence technique to minimize electromagnetic fields," Progress In Electromagnetics Research B, Vol. 26, 213-236, 2010.
doi:10.2528/PIERB10082104

9. Moro, F. and R. Turri, "Accurate calculation of the right-of-way width for power line magnetic field impact assessment," Progress In Electromagnetics Research B, Vol. 37, 343-364, 2012.
doi:10.2528/PIERB11112206

10., International Commission of Non Ionizing Radiation Protection, "Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields," Health Phys., Vol. 74, 494-522,1988.

11. Piskunov, N., Differential and Integral Calculus, MIR Publishers, Moscow, 1977.

12. Correia de Barros, M., "Computation of line parameters: Theoretical background," European EMTP Short Course., Kul, Belgium, July-August 1984.

13. Solymar, L., Lectures on Electromagnetic Theory, Oxford University Press, Oxford, UK, 1984.

14. Faria, J., Electromagnetic Foundations of Electrical Engineering, Wiley, Chichester, UK, 2008.
doi:10.1002/9780470697498

15. Dubanton, C., "Calcul approche des parametres primaires et secondaire d'une ligne de transport," EDF Bulletin de la Direction des Etudes et Recherches, Vol. 1, 53-62, 1969.

16. Deri, A., G. Tevan, A. Semlyen, and A. Castanheira, "The complex ground return plane: A simplified model for homogeneous and multi-layer earth return," IEEE Trans. Power App. Syst., Vol. 100, 3686-3693, 1981.
doi:10.1109/TPAS.1981.317011

17. Deri, A. and G. Tevan, "Mathematical verification of Dubanton's simplified calculation of overhead transmission line parameters and its physical interpretation," Arch. Elektrotechnik, Vol. 63, 191-198, 1981.
doi:10.1007/BF01574875