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Abstract—Overhead-line power conductors do not run parallel to the
ground; they actually sag between adjacent towers, defining catenary
curves. However, in the analysis of inductive coupling phenomena
between power lines and neighboring circuits, the standard approach
to deal with the sag effect is to assign a constant average height to
power line conductors. The purpose of this research is to assess the
accuracy of such an ordinary procedure. To do that, two different
approaches are developed in order to more accurately account for the
sag effect: a pure segmentation method, and a corrected segmentation
method which takes into consideration the real curvature of the sagged
conductors. The latter, and novel, approach is compared with the
other options. Calculations presented in this work utilize magnetic
vector potential as an analysis tool.

1. INTRODUCTION

The consideration of conductors sag effect has been shown to be very
important for the evaluation of the high-frequency wave propagation
parameters of three-phase overhead lines [1]. In fact, line non-
uniformity can give rise to resonant phenomena at certain critical
frequencies. Also, the computation of magnetic fields produced by
overhead power lines has been addressed in a number of papers [2–
9] which include the effect of sagged conductors. This effect is
especially important at mid span, because, there, the magnetic field
is more intense, and the risk of exceeding the rulings [10] set by the
International Commission of Non Ionizing Radiation Protection for
safe public exposure to power-frequency magnetic fields is higher.
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Power-frequency inductive coupling between overhead power lines
and neighboring circuits is a matter of concern in electrical engineering,
as in the case of the coupling with railways, gas pipelines, and oil
pipelines running at ground level, paralleling the power line route. The
computation of the differential voltage between a pair of conductors
involves the determination of a magnetic flux by surface integration of
the whole magnetic induction field B along a line span length. As a
result, the magnetic flux ψ includes small B contributions near to the
power towers and high B contributions at mid span. Therefore, the
integration process leading to ψ has an in-built “averaging” effect.

Is such an “averaging” effect adequately accounted by simply
replacing the actual sagged conductors with horizontal conductors at
average height? That is the question addressed in this paper.

In order to answer this particular question we consider just one
single sagged conductor above a flat ground (avoiding the unnecessary
complication arising from a three-phase line configuration). The
problem to be handled is illustrated in Fig. 1. Conductors 1 and 2
(which may simulate a railway, a two-conductor gas pipeline or oil
pipeline) are very near to the ground but are isolated from it. For
simplification purposes we take x1(z) = x2(z) ≈ 0. The separation
between conductors 1 and 2 is denoted by 2a. The lateral distance
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Figure 1. System geometry: A two-conductor circuit at ground level
parallels a sagged overhead conductor running over a flat ground. The
x coordinate of the sagged conductor describes a catenary curve x(z).
The x1 and x2 coordinates of conductors 1 and 2 are equal, x1(z) =
x2(z) ≈ 0. The differential voltage V12 is to be evaluated.
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between the overhead conductor and the axis of the conductor pair
is denoted by d. Our goal is to evaluate the differential voltage V̄12

between the pair of conductors at z = −l/2, assuming that at the
opposite end (z = l/2), the two conductors are interconnected. Of
course, in a longer circuit, occupying Ns line spans with total length
L = Ns l the differential voltage is Ns times bigger.

The height x of the current-carrying overhead conductor varies
along the longitudinal coordinate z according to the catenary
differential equation [4, 11],

d2x

dz2
= α

√
1 +

(
dx

dz

)2

where α is a dimensionless parameter which is related to conductor
weight and stress. The exact solution to the preceding equation is of
the hyperbolic-cosine type [4, 11]. However, for span lengths smaller
than 500m, the exact solution can be very accurately approximated
by using the following parabolic law [1, 12],

x (z) = hmin + s

(
2z

l

)2

; for − l

2
≤ z ≤ l

2
(1)

where l is the span length (distance between towers), hmin the minimum
height (at mid span), and s the sag (s = hmax − hmin). Conductor’s
average height is determined through

hav =
1
l

l/2ˆ

−l/2

x(z) dz = hmin + 1
3s (2)

Maximum height hmax and minimum height hmin are related to
hav and s as follows

hmax = hav + 2
3 s, hmin = hav − 1

3 s

In this work, we consider that all examples being examined and
compared share the same average height hav and the same span length
l. The sag s will be the variable parameter. For analysis purposes the
normalized sag ξ is introduced here

ξ =
s

smax
=

s

hmax
; 0 < ξ < 1 (3)

Note that, in actual power lines, ξ can ordinarily be found in the range
0.4 to 0.5.
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2. ZEROTH ORDER APPROACH

The usual approach to account for the catenary effect consists in
modeling the real non-uniform line with variable height x(z) by a
virtual uniform line with constant height x = hav.

The overhead conductor carries a sinusoidal current described by
i(t) = Re (Ī ejωt), where Ī is the complex amplitude of i(t). The
complex amplitude of the magnetic vector potential external to the
conductor and created by its own current is given by [13],

Ā = Ā ~ec, Ā =
µ0

2π
Ī ln

(
1
r

)
+ Ā0 , ~ec = ~ez (4)

where ~ec is the unit vector oriented according to the reference direction
assigned to i(t), r is the radial distance, and Ā0 is an arbitrary
constant. The magnetic induction field can be determined from (4)
using B̄ = ∇× Ā, yielding B̄ = µ0Ī/(2πr) ~eφ [13, 14].

Application of Faraday’s law to a rectangular path ~s coinciding
with the circuit formed by the conductors #1 and #2 at ground level
(see Fig. 1) yields the differential voltage V̄12

‰
Ē • ds̄ = V̄12 = −jω

ψ̄︷ ︸︸ ︷ˆ

Ss

B̄ • n dS = −jω

‰
Ā • ds̄

= j2ω

0ˆ

−l/2

(
Ā1−Ā2

)
dz (5)

where Ā1 = Ā(x = 0, y = d− a) and Ā2 = Ā(x = 0, y = d + a).
The magnetic induction field B in (5) is the result of the

superposition of two contributions. The contribution from the
overhead conductor current and the contribution from ground return
currents.

However, for power frequencies, the latter contribution is
negligibly small. In fact, using Dubanton’s complex ground plane
approach [15–17], the ground return current can be simulated by means
of a fictitious current filament (−Ī) located deep inside the ground at
a complex distance (2p̄ + hav) from the ground/air interface, where,
for a nonmagnetic ground, p̄ is given by

p̄ =
1√

jωσGµ0
(6)

For f = 50 Hz and for an average ground with conductivity σG =
0.01 S/m we find |2p̄| > 1 km.
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Therefore, in what follows, we will always neglect the field
originated by ground currents.

With the help of Fig. 2 (a cross section of the conductor system)
we can determine the difference (Ā1 − Ā2) in (5)

Ā1 − Ā2 =
µ0

4π
Ī ln

(
r2

r1

)2

=
µ0

4π
Ī ln

(
h2

av + (d + a)2

h2
av + (d− a)2

)
(7)

Since (7) does not depend on z, we obtain from (5) the zeroth
order approximation for the differential voltage

V̄12 = Z̄
(0)
M Ī , Z̄

(0)
M =

jωµ0l

4π
ln

(
h2

av + (d + a)2

h2
av + (d− a)2

)
(8)

It should be noted that, as expected, the 0th order approximation
for the mutual impedance Z̄M is zero for d = 0. In order to see where
V̄12 is maximum we may solve the equation ∂ZM/∂d = 0, which yields

d = d0 =
√

h2
av + a2 → Z̄

(0)
Mmax

=
jωµ0l

4π
ln

(
d0 + a

d0 − a

)
(9a)

When a ¿ hav, as it is normally the case, the results in (9a) simplify

d0 ≈ hav, Z̄
(0)
Mmax

≈ jωµ0S

4πhav
(9b)

where S = 2al is the area of the rectangular loop defined by conductors
#1 and #2 (see Fig. 1).
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Figure 2. Geometrical distances involved in the computation of the
magnetic vector potential along conductors 1 and 2. In the general
case, height hav must be replaced by x(z) in (1).
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Figure 3. Identification of the horizontal segment k of length lk at
height hk.

3. FIRST ORDER APPROACH

The first order approach utilizes the segmentation method, or stair-
case approximation [1], where the overhead conductor is modeled by
means of a chain of 2N elemental uniform segments parallel to the
ground, each segment carrying a current Ī.

The average height of each segment gradually changes according
to the variation law for x(z) in (1). The number of segments associated
with the discretization process depends on the sag value. The greater
the sag the greater the number of segments required. Each step of the
stair case approximation has a constant step height ∆h = s/N , where
N is the chosen number of segments in the range to z = −l/2 to z = 0.

As shown in Fig. 3 the uniform conductor corresponding to the
generic segment k (with k from 1 to N) is characterized by an average
height hk and length lk calculated according to (1), and given by:

lk = zk+1 − zk =
l

2

{√
1− k − 1

N
−

√
1− k

N

}
(10)

and

hk =
1
lk

zk+1ˆ

zk

x (z)dz = hav+
∆h

3

(
1+N−2k+

√
(N−k) (N−k+1)

)
(11)

with z1 = −l/2 and zN+1 = 0 .
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It is worth mentioning that when k increases (i.e., as one gets near
to mid span) the length of the segments progressively enlarges, so as
to keep ∆h constant from segment to segment.

Now, contrary to the situation in (7), the difference (Ā1 − Ā2)
depends on z, and varies from segment to segment. Therefore, the
result in (5) should be changed to

V̄12 = j2ω

0ˆ

−l/2

(Ā1 − Ā2) dz = j2ω

N∑

k=1

(Ā1 − Ā2)k lk (12)

where (
Ā1 − Ā2

)
k

=
µ0

4π
Ī ln

(
h2

k + (d + a)2

h2
k + (d− a)2

)
(13)

Hence, the 1st order approximation for the mutual impedance Z̄M

is now found to be

Z̄
(1)
M =

jωµ0

2π

N∑

k=1

ln
(

h2
k + (d + a)2

h2
k + (d− a)2

)
lk (14)

4. SECOND ORDER APPROXIMATION

In the stair case approximation developed in Section 3, all the
horizontal segments carry the same z-oriented current Ī. However,
because of sagging, the real segments are not horizontal. As shown in
Fig. 4 the current in the curved conductor can be broken down into
two components: a x component Īx and a z component Īz = Ī cos θ,
where θ varies with z along the line.

Note that Īx cannot give rise to a z-component of the magnetic
vector potential; hence, Īx does not contribute to the evaluation of the
differential voltage V̄12.
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Figure 4. Horizontal and vertical components of Ī due to sagged
conductor’s curvature. The angle θ is such that tan θ = dx/dz.



216 Brandão Faria

The angle θ(z) can be determined using (1) — see Fig. 4,

dx

dz
= tan θ(z) =

z

u
→ cos θ(z) =

1√
1 + (z/u)2

(15)

where
u = l2/(8s) (16)

The segmentation method can be improved by assigning a z-
oriented current Īk = Ī cos θk to each segment, from k = 1 to N ,
where cos θk is the average value of cos θ(z) in the interval [zk, zk+1]
of length lk:

cos θk =
1
lk

zk+1ˆ

zk

dz√
1 + (z/u)2

=
u

lk
ln


(zk+lk)+

√
(zk+lk)2+u2

zk+
√

z2
k+u2


 (17)

Accordingly, the result in (13) changes to

(
Ā1 − Ā2

)
k

=
µ0

4π
Ī ln

(
h2

k + (d + a)2

h2
k + (d− a)2

)
cos θk

and, the 2nd order approximation for the mutual impedance Z̄M is
now obtained as

Z̄
(2)
M =

jωµ0

2π

N∑

k=1

ln
(

h2
k + (d + a)2

h2
k + (d− a)2

)
lk cos θk (18)

5. COMPUTATION RESULTS

For illustration purposes we took the following fixed parameters:

hav = 15 m, l = 300 m, a = 75 cm, f = 50 Hz (19)

With regard to the segmentation methods, we utilized a
discretization degree as refined as ∆h/s ≈ 5% (we also experimented
with ∆h/s ≈ 1% but no visible alterations were detected).

Firstly, as far as the sagged overhead conductor is concerned, we
have assigned a typical value of 0.4 to the normalized sag ξ defined
in (3). This translates into hmax = 20.45m, hmin = 12.27m, and
s = 8.18m. The rms current in the sagged conductor is 2 kA. Secondly,
we considered a receiving circuit 3 km long (corresponding to 10 line
spans, Ns = 10). The circuit, placed at ground level, is positioned at
a distance d away from the sagged conductor. We let the distance d
to vary from d = 0 to d = 2hav = 30m.
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Figure 5 depicts the graphic evolution of (V12)rms against the
varying parameter d/hav, considering the application of the 0th, 1st,
and 2nd order approaches developed in this work.

It can be seen that maximum V12 occurs when d ≈ hav, with
(V12)max ≈ 19V. These results comply with the estimation results
derived in (9).

The results obtained by using the 0th order approach (horizontal
conductor at average height above the ground) are slightly smaller than
those predicted using the 1st and 2nd order approaches. The curves
describing the latter approaches are practically indiscernible from each
other.

Differential voltages in Fig. 5 were obtained at 50 Hz (and Irms =
2kA). According to (12), should the product ωI rms increase by a given
scale factor, the differential voltage would increase by the same factor.

In order to more exactly quantify the errors introduced by using
the 0th and 1st order approaches, we defined the following mutual
impedance error functions, which do not depend on ωIrms, but do
vary with the sag value

Error02(ξ) =

∣∣∣Z̄(0)
M (ξ)

∣∣∣−
∣∣∣Z̄(2)

M (ξ)
∣∣∣

∣∣∣Z̄(2)
M (ξ)

∣∣∣
× 100 % (20)

Error12(ξ) =

∣∣∣Z̄(1)
M (ξ)

∣∣∣−
∣∣∣Z̄(2)

M (ξ)
∣∣∣

∣∣∣Z̄(2)
M (ξ)

∣∣∣
× 100 % (21)
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Figure 5. Differential voltage against distance between coupled
circuits. Curves 0, 1 and 2 refer, respectively, to the 0th, 1st, and
2nd order approaches.
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Figure 6. Errors of the 0th and 1st order approaches when
compared with the accurate 2nd order approach (curves E02 and E12,
respectively).

The receiving circuit was placed at d = hav and the normalized
sag ξ = s/smax was allowed to vary in the range 0.1 to 0.8. Computed
results are shown in Fig. 6.

As expected, the error magnitude is higher for the 0th order
approach: |Error02| > |Error12|. While the 0th order approach
underestimates the differential voltage, the 1th order approach
overestimates it. This is so, because

∣∣∣Z̄(0)
M

∣∣∣ <
∣∣∣Z̄(2)

M

∣∣∣ <
∣∣∣Z̄(1)

M

∣∣∣; the
latter inequality results from the influence of cos θk < 1 in (18).

For ordinary situations, where ξ is in the interval 0.4 to 0.5, it can
be observed that errors incurred by using the 0th order approach are
smaller than 1%. Therefore, as far as the evaluation of the differential
voltage is concerned, our conclusion is that the 0th order approach is
quite adequate — there is no justification to utilize the more elaborated
and time-consuming segmentation methods.

Note: Commercialized 3D full-wave simulators could have been
used to compute the differential voltage V12 and, provided that their
codes have no bugs, we are certain that they would lead to the same
conclusion we have reached using the segmentation method and direct
field analysis. The utilization of full-wave simulators produces output
results that are opaque from a utilizer point of view, not giving him
any physical interpretation of the phenomena being simulated; full-
wave simulators should and must be used to solve problems with very
complicated geometries for which direct analytical approaches are very
difficult or even impossible to be implemented — which, clearly, is not
the present case.
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6. CONCLUSION

This work addressed the question if the ordinary approach of
substituting a horizontal conductor at average height above the ground
for a real sagged conductor would be a fairly accurate procedure as
far as the evaluation of differential voltages induced in neighboring
circuits is concerned. To that end two segmentation methods were
developed, one where the sagged conductor was broken down into a
number of uniform segments, and another one where, in addition, the
local curvature of the sagged conductor was accounted for. Results
produced by both segmentation methods showed that the improvement
in the calculation of differential voltages was not significant. Errors
incurred by using the ordinary approach are smaller than 1% for typical
sag values.
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