Vol. 25
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-06-21
A Time Domain Integral Equation Solver for Scattering from General Chiral Objects
By
Progress In Electromagnetics Research M, Vol. 25, 53-69, 2012
Abstract
In this paper, transient electromagnetic scattering by general Chiral objects is investigated using time-domain integral equations with the Poggio, Miller, Chang, Harrington, Wu, and Tsai (PMCHWT) formulations. By introducing a pair of equivalent electric and magnetic currents, electromagnetic fields inside a homogeneous Chiral region can be represented by these sources over its boundary. The uncoupled equations are solved numerically by the Galerkin's method that involves separate spatial and temporal testing procedures. The scaled Laguerre functions are used as the temporal basis and testing functions. The use of the Laguerre functions completely removes the time variable from computation, and the results are stable even at late times. Numerical results are presented and compared with analytical results, and good agreements are observed.
Citation
Gu-Ping Ye, and Ze-Hai Wu, "A Time Domain Integral Equation Solver for Scattering from General Chiral Objects," Progress In Electromagnetics Research M, Vol. 25, 53-69, 2012.
doi:10.2528/PIERM12042307
References

1. Lindell, I. V., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media, Artech House, Boston, MA, 1994.

2. Lindell, I. V., S. A. Tretyakov, and M. I. Oksanen, "Conductor-backed Tellegen slab as twist polarizer," Electron. Lett., Vol. 28, No. 3, 281-282, Jan. 1992.

3. Tellegen, B. D. H., "The gyrator: A new electric network element," Phillips Res. Rep., Vol. 3, 81, 1948.

4. Tretyakov, S. A. and A. A. Sochava, "Proposed composite material for nonreflecting shields and antenna radomes," Electron Lett., Vol. 29, 1048-1049, Jun. 1993.

5. Engheta, N. and P. Pelet, "Reduction of surface waves in chirostrip antennas," Electron Lett., Vol. 27, 5-7, Jan. 1991.

6. Pelet, P. and N. Engheta, "The theory of chirowaveguides," IEEE Trans. on Antennas and Propogat., Vol. 38, 90-98, Jan. 1990.

7. Zheng, H. X., X. Q. Sheng, and E. K. N. Yung, "Computation of scattering from conducting bodies coated with chiral materials using conformal FDTD," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 11, 1471-1484, 2004.

8. Kluskens, M. S., "Method of moments analysis of scattering by chiral media,", Ph.D. Dissertation, Ohio State University, Columbus, OH, 1991.

9. Shi, Y. and C. H. Chan, "Solution to electromagnetic scattering by bi-isotropic media using multilevel Green's functions interpolation method," Progress In Electromagnetic Research, Vol. 97, 259-274, 2009.

10. Worasawate, D., "Electromagnetic scattering from an arbitrarily shaped three-dimensional chiral body,", Ph.D. Dissertation, Syracuse University, Syracuse, NY, 2002.

11. Jaggard, D. L. and J. C. Liu, "The matrix Riccati equation for scattering from stratified chiral spheres," IEEE Trans. on Antennas and Propagt., Vol. 47, No. 7, 1201-1207, Jul. 1999.

12. Garcia, S. G., I. V. Perez, R. G. Martin, et al. "Extension of berenger's PML for bi-isotropic media," IEEE Microwave Guided Wave Lett., Vol. 8, No. 9, 297-299, 1998.

13. Demir, V., A. Z. Elsherbeni, and E. Arvas, "FDTD formulation for dispersive chiral media using the Z transform method," IEEE Trans. on Antennas and Propogat., Vol. 53, No. 10, 3374-3384, Oct. 2005.

14. Demir, V., "Electromagnetic scattering from three dimensional chiral objects using the FDTD method,", Ph.D. Dissertation, Syracuse University, Jun. 2004.

15. Semichaevsky, A., A. Akyurtlu, D. Kern, et al. "Novel BIFDTD approach for the analysis of chiral cylinders and spheres," IEEE Trans. on Antennas and Propagt., Vol. 54, No. 3, 925-932, Mar. 2006.

16. Rao, S. M., Time-domain Electromagnetics, Academic Press, San Diego, 1999.

17. Chen, Z. Z. and M. M. Ney, "The method of weighted residuals: A general approach to deriving time- and frequency-domain numerical methods," IEEE Antennas Propagat. Mag., Vol. 51, No. 1, 51-70, Feb. 2009.

18. Jung, B. H., T. K. Sarkar, Y. S. Chung, S. P. Magdalena, Z. Ji, S. Jang, and K. Kim, "Transient electromagnetic scattering from dielectric objects using the electric field integral equation with Laguerre polynomials as temporal basis functions," IEEE Trans. on Antennas Propogat., Vol. 52, No. 9, 2329-2339, Sept. 2004.

19. Jung, B. H., M. T. Yuan, T. K. Sarkar, et al. "Solving the time-domain magnetic field integral equation for dielectric bodies without the time variable through the use of entire domain Laguerre polynomials," Electromagn., Vol. 24, No. 6, 385-408, Sept. 2004.

20. Jung, B. H., T. K. Sarkar, and Y.-S. Chung, "Solution of time domain PMCHW formulation for transient electromagnetic scattering from arbitrarily shaped 3-D dielectric objects," Progress In Electromagnetics Research, Vol. 45, 291-312, 2004.

21. Wu, Z. H., "Time domain integral equations for scattering and radiation by three-dimensional homogeneous Bi-isotropic objects with arbitrary shape,", Ph.D. Dissertation, City University of Hong Kong, Hong Kong, Jul. 2010.

22. Ney, M. M., "Method of moments as applied to electromagnetic problems," IEEE Trans. on Microwave Theory and Techniques, Vol. 33, No. 10, 972-980, Nov. 1985.

23. Rao, S. M., "Electromagnetic scattering and radiation of arbitrarily shaped surfaces by triangular patch modeling,", Ph.D. Dissertation, University Mississippi, Aug. 1980.

24. Sihvola, A. H. and I. V. Lindell, "Bi-isotropic constitutive relations," Microwave Opt. Technol. Lett., Vol. 4, No. 8, 295-297, Jul. 1991.

25. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series and Products, Academic, New York, 1980.

26., FEKO electromagnetic simulation software, Available online: http://www.feko.info. .

27. Zhu, H., Z.-H. Wu, X.-Y. Zhang, and B.-J. Hu, "Time-domain integral equation solver for radiation from dipole loaded with general Bi-isotropic objects," Progress In Electromagnetics Research B, Vol. 35, 349-367, 2011.