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Abstract—In this paper, transient electromagnetic scattering by
general Chiral objects is investigated using time-domain integral
equations with the Poggio, Miller, Chang, Harrington, Wu, and Tsai
(PMCHWT) formulations. By introducing a pair of equivalent electric
and magnetic currents, electromagnetic fields inside a homogeneous
Chiral region can be represented by these sources over its boundary.
The uncoupled equations are solved numerically by the Galerkin’s
method that involves separate spatial and temporal testing procedures.
The scaled Laguerre functions are used as the temporal basis and
testing functions. The use of the Laguerre functions completely
removes the time variable from computation, and the results are stable
even at late times. Numerical results are presented and compared with
analytical results, and good agreements are observed.

1. INTRODUCTION

Bi-isotropic (BI) medium has emerged as one of the most challenging
topics in electromagnetic research in terms of theoretical problems
and potential applications in the last twenty years [1]. Chiral [2]
and Tellegen [3] materials represent two subclass of BI medium,
and most of the work has been studied on the interaction of the
electromagnetic fields with chiral material. Chiral media were used
in many applications involving antennas and arrays, antenna radomes,
and waveguides [4–6]. The chiral object is optically active, and it
means that the polarization plane of an electromagnetic (EM) wave is
rotated when it is propagating through the chiral media. This can also
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be known as handness. Object that have the property of handness are
said to be either right-handed or left-handed. Different from dielectric
or conducting objects, chiral scatterers produce both co-polarized and
cross-polarized scattered fields. Therefore, coating with chiral material
is studied for reducing radar cross-section (RCS) of targets [7].

This paper is concerned with the numerical method to solve
the EM scattering by general Chiral objects. Previously published
solutions to the electromagnetic scattering by Chiral media were based
on the method of moments (MoM) [8–10], multilevel Green’s function
interpolation method [9], plane wave decomposition [10], and the
matrix Riccati equations [11]. While there have been many frequency-
domain techniques reported, very little work has been done in the time-
domain. The time-domain schemes available for Chiral media focus on
the finite difference method, such as the finite-different time-domain
(FDTD) [12–14], the conformal FDTD [7], the BI-FDTD [15], and so
on. The analysis examples were restricted to chiral spheres whose
solutions can be analytically calculated with the modal expansion
theory. Therefore, the applicability of the FDTD method still needs
to be further verified for general Chiral objects.

Although the FDTD method has been the dominant tool for
time domain simulations, the time-domain integral equation (TDIE)
approach is preferable in some aspects especially for analysis of
transient scattering by large-size bodies [16, 17]. The reason is that the
TDIE method solves fewer unknowns using surface discretization and
requires no artificial absorbing boundary condition (ABC). Recently,
the marching-on in degree (MOD) method [18–21] using a set of scaled
Laguerre polynomials as the temporal expansion and testing functions
has been proposed. This method allows stable results to be obtained
even at late times. To the best of our knowledge, this TDIE solver has
not been used to deal with the scattering by Chiral media. Therefore,
this work presents the first application of the TDIE method based on
a MOD procedure for three-dimensional homogeneous Chiral objects.

In this paper, pairs of new sources are first defined and later
introduced to formulate the far scattered fields by homogeneous
dielectric objects in the time domain. Then the method is extended
for constructing scattered fields inside and outside the Chiral medium.
A field splitting scheme [1] is employed to simplify the expression
of the EM fields inside the bodies. In order to achieve stable
solutions, the Poggio, Miller, Chang, Harrington, Wu, and Tsai
(PMCHWT) formulations [19–21] are used to construct the surface
integral equations. After enforcing boundary conditions, a series
of coupled integral equations are established and solved numerically
by the MoM [22], involving separate spatial and temporal testing
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procedures. The Rao-Wilton-Glisson (RWG) functions [23] are used
as the spatial expansion and testing functions, and the weighted
Laguerre functions are used as the temporal expansion and testing
functions. The use of the Laguerre functions completely removes the
time variable from computation, and the matrix equation is solved
recursively using a MOD procedure. To validate the accuracy of the
proposed TDIE method, the scattering of Chiral objects is analyzed,
and the transient currents, far scattered fields and bistatic radar cross-
sections are presented and compared.

2. THEORY AND EQUATIONS

2.1. Equivalent Sources for Homogeneous Dielectric Bodies

Consider a homogeneous dielectric body with a permittivity of ε2

and a permeability of µ2 in an infinite homogeneous medium with
a permittivity of ε1 and a permeability of µ1. A pair of new sources
e (r, t) and h (r, t) on the surface S of the dielectric body are defined
by

J (r, t) =
∂

∂t
e(r, t) (1)

M (r, t) =
∂

∂t
h(r, t) (2)

where J (r, t) and M (r, t) are the equivalent electric and magnetic
surface currents.

The electric and magnetic fields Es and Hs produced by electric
and magnetic surface currents J and M, radiating into an unbounded
space characterized by ε1 and µ1 are given by

Es = −∂A(r, t)
∂t

−∇Φ(r, t)− 1
ε1
∇× F(r, t) (3)

Hs = −∂F(r, t)
∂t

−∇Ψ(r, t) +
1
µ1
∇×A(r, t) (4)

where A and F are the magnetic and electric vector potentials,
respectively, and Φ and Ψ are the electric and magnetic scalar
potentials given by

A(r, t) =
µ1

4π

∫

S

J(r′, τ)
R

dS′ (5)

F(r, t) =
ε1

4π

∫

S

M(r′, τ)
R

dS′ (6)
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Φ(r, t) =
1

4πε1

∫

S

qe(r′,τ)
R

dS′ (7)

Ψ(r, t) =
1

4πµ1

∫

S

qm(r′,τ)
R

dS′ (8)

where R = |r−r′| represents the distance between the observation point
r; the source point r′, τ = t−R/c1 is the retarded time; c1 = 1/

√
ε1µ1

is the velocity of the propagation of EM wave in space. The electric
surface charge density qe and magnetic surface charge density qm are
related to the electric current density J and magnetic current density
M, respectively, by the equation of continuity

∇ · J(r, t) = − ∂

∂t
qe(r, t) (9)

∇ ·M(r, t) = − ∂

∂t
qm(r, t) (10)

A pair of new sources e (r, t) and h (r, t) are defined in (1) and (2), so
the charge density will be

qe (r, t) = −∇ · e(r, t) (11)
qm (r, t) = −∇ · h(r, t) (12)

Equations (5)–(8) will be changed as

A (r, t) =
µ1

4π

∫

S

1
R

∂

∂t
e(r′, τ)dS′ (13)

F (r, t) =
ε1

4π

∫

S

1
R

∂

∂t
h(r′, τ)dS′ (14)

Φ (r, t) = − 1
4πε1

∫

S

1
R
∇ · e(r′, τ)dS′ (15)

Ψ (r, t) = − 1
4πµ1

∫

s

1
R
∇ · h(r′,τ)dS′ (16)

Substitute Equations (13)–(16) to (3) and (4), respectively,

Es = −µ1

∫

S

1
4πR

∂2e (r, τ)
∂t2

dS′ +
∇
ε1

∫

S

∇ · e (r, τ)
4πR

dS′

−0.5n̂× ∂h (r, t)
∂t

−
∫

S0

∇× 1
4πR

∂h(r, τ)
∂t

dS′ (17)
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Hs = −ε1

∫

S

1
4πR

∂2h (r, τ)
∂t2

dS′ +
∇
µ1

∫

S

∇ · h (r, τ)
4πR

dS′

+0.5n̂× ∂e (r, t)
∂t

+
∫

S0

∇× 1
4πR

∂e(r, τ)
∂t

dS′ (18)

where S0 denotes the surface with the singularity at r = r′ removed
from the surface S. We define two integro-differential operators L and
K as follows,

L (X) = µ1

∫

S

∂2X (r′, τ)
∂t2

1
4πR

dS′ − ∇
ε1

∫

S

∇ ·X (r′, τ)
4πR

dS′ (19)

K (X) =
1
2
n̂× ∂

∂t
X (r, t) +

∫

S0

∇×
[
∂X(r′, τ)

∂t

1
4πR

]
dS′ (20)

Then, the total scattered electric and magnetic fields will be written
as

Es(e,h) = −L(e)−K(h). (21)
Hs (e,h) = K (e)− L (h) /η2

1. (22)

It is noted that here we introduce a pair of new sources e (r, t)
and h (r, t) instead of using conventional equivalent electrical current
J (r, t) and magnetic current M (r, t) to construct the far-scattered
fields. Such that, a time-integral term will disappear, and we can
easily handle the time derivative of the electric and magnetic vector
potentials.

2.2. Integral Equations for Scattering of Chiral Medium

Consider a homogenous Chiral body with a permittivity ε2 and a
permeability µ2 in an infinite homogenous medium with a permittivity
ε1 and a permeability µ1. The expression of electric and magnetic
fields inside the Chiral region are relatively complex because of the
introduction of constitutive relations, namely

D = ε2E− jκr
√

ε2µ2H. (23)

B = jκr
√

ε2µ2E + µ2H. (24)

where κr is the Pasteur parameter [1], and ε2 and µ2 are the
permittivity and permeability of the Chiral medium. For a lossy
material, these parameters are complex numbers. It is noticed that
the above relations reduce to a conventional isotropic medium when
κr is equal to zero.
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These relations are frequency-domain expressions, which implic-
itly assume time-harmonic excitation in the ejωt convention. The
time-domain expressions of the constitutive relations are given as fol-
lows [24],

D = ε2E− χCT
∂H
∂t

(25)

B = µ2H + χCT
∂E
∂t

(26)

where
χCT = κr

√
ε2µ2/ω (27)

The equivalent electric and magnetic sources on the surface of
the BI media are denoted as eb (r, t) and hb (r, t), respectively, and
surface currents are denoted as Jb (r, t) and Mb (r, t), respectively.
The currents Jb (r, t) and Mb (r, t) can be expressed with these sources
eb (r, t) and hb (r, t) as

Jb (r, t) =
∂

∂t
eb(r, t) (28)

Mb (r, t) =
∂

∂t
hb(r, t) (29)

The scattered fields Es
e and Hs

e outside the Chiral media produced
by the sources eb and hb is written as

Es
e(eb,hb) = −L(eb)−K(hb) (30)

Hs
e(eb,hb) = K(eb)− L(hb)/η2

1 (31)

To represent the fields inside the Chiral region, a field splitting
scheme [1] is applied. Both the electric and magnetic fields Es

b and Hs
b

in the homogeneous Chiral medium are divided into the right- and left-
circularly polarized wavefields. The right-polarized fields are denoted
by “+” subscript, while the left-polarized components are denoted by
“–” subscript. Therefore, we can write

Es
b = Es

b+ + Es
b− (32)

Hs
b = Hs

b+ + Hs
b− (33)

The wavefields Es
b+ (Hs

b+) and Es
b− (Hs

b−) are independent and
uncoupled in the homogeneous Chiral medium. They are related to
respective medium characterized by ε+ (ε−), µ+ (µ−), and η+ (η−),
which are defined by

ε± = ε2(1± κr) (34)
µ± = µ2(1± κr) (35)

η± =
√

µ2/ε2 = η2 (36)



Progress In Electromagnetics Research M, Vol. 25, 2012 59

Since two wavefields are independently governed by Maxwell’s
equations, Es

b+ (Hs
b+) and Es

b− (Hs
b−) can be expressed by

Es
b± = −L± (eb±)−K±(hb±) (37)

Hs
b± = K± (eb±)− L± (hb±) /η2

± (38)
where the integro-differential operators L± and K± are defined as

L± (X) = µ±
∫

S

∂2X (r′, τ)
∂t2

1
4πR

dS′ − ∇
ε±

∫

S

∇ ·X (r′, τ)
4πR

dS′ (39)

K± (X) =
∫

S0

∇×
[
∂X(r′, τ)

∂t

1
4πR

]
dS′ − 1

2
n̂× ∂

∂t
X (r, t) (40)

As can be seen, the expressions of the scattered wavefields
Es

b+ (Hs
b+) and Es

b− (Hs
b−) in the media induced by eb+ (hb+)

and eb− (hb−) are similar to those of free space except that the
material parameters are different. Here the relations of (eb, hb) and
(eb+ (hb+), eb−(hb−)) can be obtained from Maxwell’s equations [21],

−eb± =
1
2

(
eb ∓ j

η2
hb

)
. (41)

−hb± =
1
2
(hb ± jη2eb) (42)

To determine the unknown sources eb and hb, the boundary condition
needs to be enforced on the Chiral scatterer surface.

−Ein(r, t)
∣∣
tan

−Es
e(eb,hb)|tan +

∑
±

Es
b± (eb±,hb±)

∣∣
tan

= 0 (43)

−Hin(r, t)
∣∣
tan

−Hs
e(eb,hb)|tan +

∑
±

Hs
b± (eb±,hb±)

∣∣
tan

= 0 (44)

where subscript “tan” defines tangential components, Ein and Hin are
the incident electric and magnetic fields.

2.3. Basis Functions and Testing Scheme

MoM is adopted to solve the Equations (43) and (44). For
the numerical implementation, the equivalent electric and magnetic
currents eb (r, t) and hb (r, t) are represented in terms of RWG
functions by

eb (r, t) =
N∑

n=1

∞∑

j=0

ebn,jφj(st)fn(r) (45)

hb (r, t) =
N∑

n=1

∞∑

j=0

hbn,jφj(st)fn(r) (46)
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where N is the number of the inner edges; ebn,j and hbn,j are the
unknown coefficients; φj(st) = e−st/2Lj(st) is the causal temporal
basis function. fn (r) represents the RWG function, and Lj (st) is the
Laguerre function [25] of degree j with scaling factor s.

Substituting (45) to (19) and (20) respectively, we obtained

L(eb) = µ0s
2

N∑

n=1

∞∑

j=0

∫

S

1
4πR

(
0.25ebn,j+

j−1∑

k=0

(j−k)ebn,k

)
φj(sτ)fn(r)dS

′

− 1
ε0

N∑

n=1

∞∑

j=0

ebn,j∇
∫

S

[∇ · fn(r)]
φj (sτ)
4πR

dS
′

(47)

K (eb) = 0.5n̂× s
N∑

n=1

∞∑

j=0

(
0.5ebn,j +

j−1∑

k=0

ebn,k

)
φj(sτ)fn(r)

+
s2

c0

N∑

n=1

∞∑

j=0

∫

S0

(
0.25ebn,j+

j−1∑

k=0

(j−k)ebn,k

)
φj(sτ)fn(r)×R̂

/
RdS′

+s
N∑

n=1

∞∑

j=0

∫

S0

(
0.5ebn,j+

j−1∑

k=0

ebn,k

)
φj (sτ) fn (r)×R̂

/
R2dS′ (48)

Since L (hb) is identical as L (eb) in Equation (47), and and K (hb) is
idential as K (eb) in (48), the formulations are omitted here.

In computing the spatial integrals in (47) and (48), the functions
dependent on the following variable do not change appreciably within
a given triangular patch so that

τv = t− R
cv

, τpq
mn,v = t− Rpq

mn
cv

, Rpq
mn = |rcp

m − rcq
n | (49)

where p, q, and v can be either + or −, and rcp
m and rcq

n are the position
vectors of the center points in triangle pair T±m .

Through the Galerkin’s method [22], we take a spatial and a
temporal testing with fm (r) (m = 1, 2, . . . , N) and φi (st) (i =
0, 1, 2, . . . , M) separately to the Equation (43), where M is the
maximum degree of the Laguerre functions to be evaluated from the
time-bandwidth product of the waveform. It is noted that the testing
functions are exactly the same as the basis functions. The equation
below is obtained

〈φi(st), 〈fm(r), L(eb)〉〉+ 〈φi(st), 〈fm(r),K(hb)〉〉
−

∑
±

〈
φi(st),

〈
fm(r), L±(eb±)

〉〉−
∑
±

〈
φi(st),

〈
fm(r),K±(hb±)

〉〉

=
〈
φi(st),

〈
fm(r),Ein

〉〉
(50)
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First, we consider the testing of the integro-differential operator L with
the electric source eb. With reference to [18], the testing formulation
can be written as

〈φi(st), 〈fm(r), L(eb(r, t))〉〉 =
1
ε0

N∑

n=1

∑
p,q

i∑

j=0

ebn,jIij(sτpq
mn)bpq

mn,1

+µ0s
2

N∑

n=1

∑
p,q

i∑

j=0

(
0.25ebn,j +

j−1∑

k=0

(j − k)ebn,k

)
Iij (sτpq

mn) apq
mn,1 (51)

where inner integral 〈fm(r)〉 denotes a spatial testing which is defined
by multiplying the function fm (r) and integrating in the triangle
pairs T±m on the Chiral object surface, and 〈φi(st)〉, represents a
temporal testing, which is done by multiplying the function φi (st)
and integrating from zero to infinity. The temporal testing can be
simplified as

Iij (sτpq
mn) =

{
e−sτpq

mn/2 [Li−j (sτpq
mn)− Li−j−1 (sτpq

mn)] j ≤ i

0 j > i
(52)

and the expression of the spatial integrals apq
mn,1 and bpq

mn,1 between
triangles on surface of the Chiral scatterer are given by

apq
mn,1 =

∫

S

∫

S′
fp
m (r) · f q

n

(
r′

)
/ (4πR) dS′dS (53)

bpq
mn,1 =

∫

S
∇ · fp

m (r)
∫

S′
∇ · f q

n

(
r′

)
/ (4πR)dS′dS (54)

Then we consider the second testing term of the left-hand side in (50),
and it becomes

〈φi(st), 〈fm(r),K (hb(r, t))〉〉=s

N∑

n=1

∑
p,q

i∑

j=0

(
0.5hbn,j+

j−1∑

k=0

hbn,k

)
Iij(sτpq

mn)

dpq
mn,12+s2/c0

N∑

n=1

∑
p,q

i∑

j=0

(
0.25hbn,j+

j−1∑

k=0

(j−k)hbn,k

)
Iij(sτpq

mn)dpq
mn,11 (55)

where the expression of the spatial integrals dpq
mn,11 and dpq

mn,12 between
triangles on the surface of the Chiral object are given by

dpq
mn,11 =

∫

S

∫

S′
fp
m (r) · f q

n

(
r′

)× R̂
/

(4πR)dS′dS (56)

dpq
mn,12 =

∫

S

∫

S′
fp
m (r) · f q

n

(
r′

)× R̂
/

(4πR2)dS′dS (57)
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The integral in Equations (56) and (57) may be evaluated using
the Gaussian quadrature integral scheme for unprimed and primed
coordinates numerically [23]. Next the third and fourth term of the
left-hand side of the equation (50) can be expressed in the same way
when incorporating the relationship (41) and (42) into Equations (39)
and (40).

Similarly, we take a spatial and a temporal testing with fm (r)
(m = 1, 2, . . . , N) and φi (st) (i = 0, 1, 2, . . . , M) to Equations (43)
and (44), and all the testing procedures can be done easily.

After applying both spatial and temporal testing procedures to
Equations (43) and (44), the 2N × 2N matrix below is obtained after
some mathematical manipulation,

[[
ZEE

mn

]
N×N

[
ZEH

mn

]
N×N[

ZHE
mn

]
N×N

[
ZHH

mn

]
N×N

][
[ebn,i]N×1
[hbn,i]N×1

]
=




[
γE

m,i

]
N×1[

γH
m,i

]
N×1


 (58)

To obtain the coefficients en,j and hn,j , we need to solve the matrix
recursively on the degree of the Laguerre function. Particularly in the
first step when i = 0, only system matrix elements ZEE

mn, ZEH
mn,

ZHE
mn, and ZHH

mn are needed and the matrix LU decomposition can
be stored for further use. At the ith step, we only have to compute
γE

m,i and γH
m,i on the right side of the matrix, which are the sums of

the previous solved coefficients en,j and hn,j . The detailed expressions
of thses elements are similar to those of Bi-isotropic scatterer given
in chapter 4 of reference [21]. The complexities of this method are
O (12MN2) for the filling procedure and O (M3N2) for the iteration
procedure. M is the maximum time degree of temporal testing
function, and N is the number of the inner edges of the triangular
mesh of the object surface.

3. RESULTS AND DISCUSSION

In this section, the numerical results for 3-D Chiral scatterer placed in
free space will be presented to validate the previously described TDIE
scheme. The scatterers are illuminated by a Gaussian plane wave as
shown in Figure 1, in which the electric fields are given by

Ei(r, t) = 4E0e
−γ2

/(
√

πT ). (59)

where γ = (4/T )(ct− ct0 − r · k̂), k̂ is the unit vector in the direction
of the wave propagation, T the pulse width, and ct0 the time delay.
In this work, the field is incident from ϕ = 0◦ and θ = 0◦ with k̂ = ẑ,
and E0 = x̂.
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Figure 1. The 3-D Chiral sphere and coordinates illustrations.

The first example is the scattering from a dielectric sphere of
radius 0.5 m centered at the origin. The sphere has a permittivity
of εr = 4.0 and a permeability of µr = 1.0. FEKO [26] is used to
mesh the sphere surface, which has a total of 616 patches and 924
edges. The Gaussian pulse of T = 8 lm and ct0 = 12 lm is used in the
numerical computation this time. The unit ‘lm’ denotes a light meter
and represents the length of time taken by the electromagnetic wave to
travel 1m in free space. In the computation, we set s = 1.0× 109 and
M = 80, which is sufficient to get accurate results. The exact solutions
obtained using the Mie series are presented for comparison.

The choice of factor s and maximum temporal degree M is very
crucial because these two parameters decide the amount of support
given by the Laguerre functions in the time-domain response [27]. For
dielectric bodies problems, the initial value of these parameters are
set as M = 2BTf + 1, and s = 10fmax [19], where B and Tf are the
frequency bandwidth and time duration of the excitation signal, and
fmax is the maximum frequency.

Figure 2 depicts the computed backward scattered fields, while the
forward scattered fields are shown in Figure 3. The Mie series are also
presented for comparison [23]. We can see that both the backward and
forward scattered fields are stable and in good agreement with the Mie
series. As a special case, this example exhibits somewhat the accuracy
of the proposed TDIE formula for Chiral media.

Then a chiral sphere with radius of 0.01 m is analyzed and the
constitutive parameter is set as κr = 0.15. The Gaussian pulse of
T = 0.5 lm and ct0 = 0.1 lm is used in the numerical computation.
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Figure 2. Backward scat-
tered far-field from the dielectric
sphere.
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Figure 3. Forward scattered far-
field from the dielectric sphere.
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at the point (0.0096, 0.0022,
0.0005) on a 0.01 m radius chiral
sphere (logarithm scale). The
parameters of the sphere are εr =
4.0, µr = 1.0, κr = 0.15.
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Figure 5. Normalized for-
ward scattered fields of the chiral
sphere. The sphere has a radius of
0.01m, and other parameters are
εr = 4.0, µr = 1.0, κr = 0.15.

The maximum temporal degree M = 110 is used. The currents on one
point of the sphere are shown in Figure 4 and stable results are observed
at a very late time. The normalized forward transient response of
the electric fields is plotted in Figure 5, and the ϕ-component of the
scattered fields is observed. Figure 6 displays the forward co- and
cross-polarized bistatic echo widths in a broad frequency band from 0
to 9 GHz. The analytical results [11] are also shown for comparison,
and they agree well with the proposed TDIE solution. It is noticed
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Figure 6. Forward co- and cross-polarized bistatic echo widths of
the chiral sphere as a function of frequency. The sphere has a radius
of 0.01 m, and other parameters are chosen with εr = 4.0, µr = 1.0,
κr = 0.15.

that the exact and TDIE results seem to diverge in the frequencies
higher than 9GHz. The reason is that the incident Gaussian pulse of
T = 0.5 lm and ct0 = 0.1 lm used has a spectrum of 9 GHz, and the
computed results higher than 9 GHz will not be correct.

We also make a comparison between the proposed TDIE method
with the FDTD approach. The chiral sphere is chosen as the scatterer,
which was computed using FDTD [14] as well as analytical method [11].
The sphere has a radius of 7.2 cm, and other parameters are chosen as
εr = 4.0, µr = 1.0, and κr = 0.25. The sphere is meshed using
616 triangular patches, and the Gaussian pulse has a peak at 1.0 lm
with width of 0.8 lm. The maximum temporal degree M is set as 120.
The computed forward co- and cross-polarized radar cross-sections as
a function of the elevation angles at 1 GHz are shown in Figure 7, and
the accuracy of the TDIE method is approved by the FDTD method
and analytical results.

4. EXTENSION TO THE DISPERSIVE CASE

Owing to the fact that the constitutive parameters are non-dispersive,
the equations above-mentioned are set up for high idealized model.
It is not very difficult for us to extend the proposed method for
frequency dependent materials. The TDIE method based on the MOD
procedure is one of the recursive convolution techniques that allow
linear dispersion to be incorporated like FDTD [13, 14] formulation.

Considering the dispersive chiral media, the electric and magnetic
fields are decomposed into the wavefields and the scattering problem
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Figure 7. Computed forward co- and cross-polarized radar cross-
sections of a 7.2 cm radius chiral sphere with comparison with FDTD
method at frequency 1GHz. The parameters of the sphere are εr = 4.0,
µr = 1.0, and κr = 0.25.

is treated as the sum of two problems in associated isotropic media.
After using the fields splitting scheming, the Equations (34)–(36) will
become

ε±(ω) = ε2(1± κr(ω)) (60)
µ±(ω) = µ2(1± κr(ω)) (61)

η± =
√

µ2/ε2v∓ = η2 (62)

where the frequency variation of the chirality term is expressed by the
Condon model [1].

The fields inside the chiral media can be constructed using
the integro-differential operators L± and K±. Different from non-
dispersive formulations (39) and (40), these two operators will have an
additional time-integral term. After applying boundary condition, the
coupled integral equations can be obtained. For the testing procedure,
the temporal integral Equation (52) will become a little complicated
because of the additional time-integral term. This will be the further
work in the near future.

5. CONCLUSION

The TDIE solver based on the MOD procedure is proposed to calculate
the scattering of Chiral objects with arbitrary shape. The integral
equations are solved with Galerkin’s method, which involves separate
spatial and temporal testing procedures. The RWG functions are used
as the spatial expansion and testing functions. The weighted Laguerre
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polynomials are used as the temporal expansion and testing functions.
Numerical results are shown to agree well with the analytical results
and FDTD method. In later work, this method will be extended
for scattering problems of layered Chiral objects and antenna loaded
Chiral materials.

REFERENCES

1. Lindell, I. V., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen,
Electromagnetic Waves in Chiral and Bi-isotropic Media, Artech
House, Boston, MA, 1994.

2. Lindell, I. V., S. A. Tretyakov, and M. I. Oksanen, “Conductor-
backed Tellegen slab as twist polarizer,” Electron. Lett., Vol. 28,
No. 3, 281–282, Jan. 1992.

3. Tellegen, B. D. H., “The gyrator: A new electric network
element,” Phillips Res. Rep., Vol. 3, 81, 1948.

4. Tretyakov, S. A. and A. A. Sochava, “Proposed composite material
for nonreflecting shields and antenna radomes,” Electron Lett.,
Vol. 29, 1048–1049, Jun. 1993.

5. Engheta, N. and P. Pelet, “Reduction of surface waves in chirostrip
antennas,” Electron Lett., Vol. 27, 5–7, Jan. 1991.

6. Pelet, P. and N. Engheta, “The theory of chirowaveguides,” IEEE
Trans. on Antennas and Propogat., Vol. 38, 90–98, Jan. 1990.

7. Zheng, H. X., X. Q. Sheng, and E. K. N. Yung, “Computation
of scattering from conducting bodies coated with chiral materials
using conformal FDTD,” Journal of Electromagnetic Waves and
Applications, Vol. 18, No. 11, 1471–1484, 2004.

8. Kluskens, M. S., “Method of moments analysis of scattering
by chiral media,” Ph.D. Dissertation, Ohio State University,
Columbus, OH, 1991.

9. Shi, Y. and C. H. Chan, “Solution to electromagnetic scattering by
bi-isotropic media using multilevel Green’s functions interpolation
method,” Progress In Electromagnetic Research, Vol. 97, 259–274,
2009.

10. Worasawate, D., “Electromagnetic scattering from an arbitrarily
shaped three-dimensional chiral body,” Ph.D. Dissertation,
Syracuse University, Syracuse, NY, 2002.

11. Jaggard, D. L. and J. C. Liu, “The matrix Riccati equation
for scattering from stratified chiral spheres,” IEEE Trans. on
Antennas and Propagt., Vol. 47, No. 7, 1201–1207, Jul. 1999.

12. Garcia, S. G., I. V. Perez, R. G. Martin, et al., “Extension of



68 Ye and Wu

berenger’s PML for bi-isotropic media,” IEEE Microwave Guided
Wave Lett., Vol. 8, No. 9, 297–299, 1998.

13. Demir, V., A. Z. Elsherbeni, and E. Arvas, “FDTD formulation
for dispersive chiral media using the Z transform method,” IEEE
Trans. on Antennas and Propogat., Vol. 53, No. 10, 3374–3384,
Oct. 2005.

14. Demir, V., “Electromagnetic scattering from three dimensional
chiral objects using the FDTD method,” Ph.D. Dissertation,
Syracuse University, Jun. 2004.

15. Semichaevsky, A., A. Akyurtlu, D. Kern, et al., “Novel BI-
FDTD approach for the analysis of chiral cylinders and spheres,”
IEEE Trans. on Antennas and Propagt., Vol. 54, No. 3, 925–932,
Mar. 2006.

16. Rao, S. M., Time-domain Electromagnetics, Academic Press, San
Diego, 1999.

17. Chen, Z. Z. and M. M. Ney, “The method of weighted residuals:
A general approach to deriving time- and frequency-domain
numerical methods,” IEEE Antennas Propagat. Mag., Vol. 51,
No. 1, 51–70, Feb. 2009.

18. Jung, B. H., T. K. Sarkar, Y. S. Chung, S. P. Magdalena, Z. Ji,
S. Jang, and K. Kim, “Transient electromagnetic scattering from
dielectric objects using the electric field integral equation with
Laguerre polynomials as temporal basis functions,” IEEE Trans.
on Antennas Propogat., Vol. 52, No. 9, 2329–2339, Sept. 2004.

19. Jung, B. H., M. T. Yuan, T. K. Sarkar, et al., “Solving the
time-domain magnetic field integral equation for dielectric bodies
without the time variable through the use of entire domain
Laguerre polynomials,” Electromagn., Vol. 24, No. 6, 385–408,
Sept. 2004.

20. Jung, B. H., T. K. Sarkar, and Y.-S. Chung, “Solution of
time domain PMCHW formulation for transient electromagnetic
scattering from arbitrarily shaped 3-D dielectric objects,” Progress
In Electromagnetics Research, Vol. 45, 291–312, 2004.

21. Wu, Z. H., “Time domain integral equations for scattering and
radiation by three-dimensional homogeneous Bi-isotropic objects
with arbitrary shape,” Ph.D. Dissertation, City University of
Hong Kong, Hong Kong, Jul. 2010.

22. Ney, M. M., “Method of moments as applied to electromagnetic
problems,” IEEE Trans. on Microwave Theory and Techniques,
Vol. 33, No. 10, 972–980, Nov. 1985.

23. Rao, S. M., “Electromagnetic scattering and radiation of



Progress In Electromagnetics Research M, Vol. 25, 2012 69

arbitrarily shaped surfaces by triangular patch modeling,” Ph.D.
Dissertation, University Mississippi, Aug. 1980.

24. Sihvola, A. H. and I. V. Lindell, “Bi-isotropic constitutive
relations,” Microwave Opt. Technol. Lett., Vol. 4, No. 8, 295–297,
Jul. 1991.

25. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series and
Products, Academic, New York, 1980.

26. FEKO electromagnetic simulation software, Available online:
http://www.feko.info.

27. Zhu, H., Z.-H. Wu, X.-Y. Zhang, and B.-J. Hu, “Time-
domain integral equation solver for radiation from dipole loaded
with general Bi-isotropic objects,” Progress In Electromagnetics
Research B, Vol. 35, 349–367, 2011.


