Vol. 41
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-06-13
Higher-Order Statistics for Stochastic Electromagnetic Interactions: Applications to a Thin-Wire Frame
By
Progress In Electromagnetics Research B, Vol. 41, 307-332, 2012
Abstract
Uncertainties in an electromagnetic observable, that arise from uncertainties in geometric and electromagnetic parameters of an interaction configuration, are here characterized by combining computable higher-order moments of the observable with higher-order Chebychev inequalities. This allows for the estimation of the range of the observable by rigorous confidence intervals. The estimated range is then combined with the maximum-entropy principle to arrive at an efficient and reliable estimation of the probability density function of the observable. The procedure is demonstrated for the case of the induced voltage of a thin-wire frame that has a random geometry, is connected to a random load, and is illuminated by a random incident field.
Citation
Ousmane Oumar Sy, Martijn Constant van Beurden, Bastiaan L. Michielsen, Jean-Pierre A. H. M. Vaessen, and Antonius G. Tijhuis, "Higher-Order Statistics for Stochastic Electromagnetic Interactions: Applications to a Thin-Wire Frame," Progress In Electromagnetics Research B, Vol. 41, 307-332, 2012.
doi:10.2528/PIERB12042104
References

1. Balanis, C., "Antenna theory: A review," Proc. of the IEEE, Vol. 80, No. 1, 7-23, 1992.
doi:10.1109/5.119564

2. Bruns, H. D., C. Schuster, and H. Singer, "Numerical electromagnetic field analysis for EMC problems," IEEE Trans. EMC., Vol. 49, No. 2, 253-262, 2007.

3. Bai, L., Z.-S. Wu, H.-Y. Li, and T. Li, "Scalar radiative transfer in discrete media with random oriented prolate spheroids particles," Progress In Electromagnetics Research B, Vol. 33, 21-44, 2011.
doi:10.2528/PIERB11042902

4. Moglie, F., V. M. Primiani, and A. P. Pastore, "Modeling of the human exposure inside a random plane wave field," Progress In Electromagnetics Research B, Vol. 29, 251-267, 2011.
doi:10.2528/PIERB11022506

5. Lang, R., M. Bahie-El Din, and R. Pickholtz, "Stochastic effects in adaptive null-steering antenna array performance," IEEE Journal on Selected Areas in Communications, Vol. 3, No. 5, 767-778, 1985.
doi:10.1109/JSAC.1985.1146250

6. Bellan, D. and S. Pignari, "Complex random excitation of electrically-short transmission lines," Proc. IEEE International Symposium on EMC, Vol. 3, 663-668, 2006.

7. Hill, D., "Plane wave integral representation for fields in reverberation chambers," IEEE Trans. EMC., Vol. 40, No. 3, 209-217, 1998.

8. Primiani, V. M. and F. Moglie, "Numerical simulation of LOS and NLOS conditions for an antenna inside a reverberation chamber," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17-18, 2319-2331, 2010.
doi:10.1163/156939310793675600

9. Li, Z., L. L. Liu, and C. Q. Gu, "Generalized equivalent cable bundle method for modeling EMC issues of complex cable bundle terminated in arbitrary loads," Progress In Electromagnetics Research, Vol. 123, 13-30, 2012.
doi:10.2528/PIER11102601

10. Xie, H., J. Wang, S. Li, H. Qiao, and Y. Li, "Analysis and efficient estimation of random wire bundles excited by plane-wave fields," Progress In Electromagnetics Research B, Vol. 35, 167-185, 2011.
doi:10.2528/PIERB11091508

11. Sy, O. O., M. C. van Beurden, B. L. Michielsen, J. A. H. M. Vaessen, and A. G. Tijhiuis, "Second-order statistics of complex observables in fully stochastic electromagnetic interactions: Applications to EMC," Radio Science, Vol. 45, RS4004.1{RS4004.16, 2010.

12. Sy, O. O., M. C. Van Beurden, B. L. Michielsen, J. A. H. M. Vaessen, and A. G. Tijhuis, "A statistical characterization of resonant electromagnetic interactions with thin wires: Variance and kurtosis analysis," Scientific Computing in Electrical Engineering (SCEE), 117-124, Springer-Verlag, Berlin, Heidelberg, 2010.

13. Papoulis, A. and S. U. Pillai, Probability, Random Variables and Stochastic Processes, Series in Electrical and Computer Engineering, 2002.

14. Jaynes, E. T., "Information theory and statistical mechanics," Phys. Rev., Vol. 106, No. 4, 620-630, 1957.
doi:10.1103/PhysRev.106.620

15. Mrozynski, G., V. Schulz, and H. Garbe, "A benchmark catalog for numerical field calculations with respect to EMC problems," Proc. IEEE International Symposium on EMC, Vol. 1, 497-502, 1999.

16. Parmantier, J.-P., "Numerical coupling models for complex systems and results," IEEE Trans. EMC., Vol. 46, No. 3, 359-367, 2004.

17. Rumsey, V. H., "Reaction concept in electromagnetic theory," Phys. Rev., Vol. 94, No. 6, 1483-1491, 1954.
doi:10.1103/PhysRev.94.1483

18. Michielsen, B. L. and C. Fiachetti, "Covariance operators, green functions, and canonical stochastic electromagnetic fields," Radio Science, Vol. 40, No. 5, RS5001.1{RS5001.12, 2005.

19. King, R., Transmission-Line Theory, Dover Publications, 1965.

20. Larrabee, D. A., "Reduced coupling of electromagnetic waves to transmission lines due to radiation effects," PIERS Proceedings, Pisa, Italy, March 28-31, 2004.

21. Larrabee, D. A., "Electromagnetic effects on transmission lines," International Conf. Software in Telecom. and Computer Networks (SoftCOM), 37-42, 2006.

22. Mei, K. K., "On the integral equation of thin wire antennas," IEEE Trans. Ant. Prop., Vol. 13, No. 3, 374-378, 1965.
doi:10.1109/TAP.1965.1138432

23. Harrington, R., Field Computation by Moment Methods, Macmillan, 1968.

24. Bharucha-Reid, A., Random Integral Equations, Vol. 96, R. Bellman, Ed., 1972.

25. Krommer, A. R. and C. W. Ueberhuber, Computational Integration, SIAM, 1998.
doi:10.1137/1.9781611971460

26. Gerstner, T. and M. Griebel, "Numerical integration using sparse grids," Numerical Algorithms, Vol. 18, No. 3, 209-232, 1998.
doi:10.1023/A:1019129717644

27. Fletcher, R., Practical Methods of Optimization, Wiley, 1987.

28. Einbu, J., "On the existence of a class of maximum-entropy probability density function," IEEE Trans. Info. Theory, Vol. 23, 772-775, 1977.
doi:10.1109/TIT.1977.1055784

29. Graybill, F. and H. Iyer, Regression Analysis, Concepts and Applications, Duxbury Press, 1994.

30. Nitsch, J. B. and S. V. Tkachenko, "Propagation of high-frequency current waves along periodical thin-wire structures," Third International Conference on Ultrawideband and Ultrashort Impulse Signals, 279-281, 2006.
doi:10.1109/UWBUS.2006.307229

31. Champagne II, N. J., J. T. Williams, and D. R. Wilton, "The use of curved segments for numerically modeling thin wire antennas and scatterers," IEEE Trans. Ant. Prop., Vol. 40, No. 6, 682-689, 1992.
doi:10.1109/8.144603

32. Sy, O. O., M. van Beurden, B. Michielsen, and A. Tijhuis, "Variance and kurtosis-based characterization of resonances in stochastic transmission lines: Local versus global random geometries," Turk. J. Elec. Eng. & Comp. Sci., Vol. 17, No. 3, 2009.