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Abstract—Uncertainties in an electromagnetic observable, that arise
from uncertainties in geometric and electromagnetic parameters of
an interaction configuration, are here characterized by combining
computable higher-order moments of the observable with higher-order
Chebychev inequalities. This allows for the estimation of the range of
the observable by rigorous confidence intervals. The estimated range
is then combined with the maximum-entropy principle to arrive at an
efficient and reliable estimation of the probability density function of
the observable. The procedure is demonstrated for the case of the
induced voltage of a thin-wire frame that has a random geometry, is
connected to a random load, and is illuminated by a random incident
field.

1. INTRODUCTION

Various numerical methods have been developed to efficiently model
interactions between electromagnetic waves and material systems.
The method of moments (MoM), transmission-line methods or
finite-difference schemes are just a few examples of such numerical
methods [1, 2]. These methods can all be regarded as deterministic
“black boxes”, which given the geometrical and physical properties of a
material system, and the characteristics of the ambient electromagnetic
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field, compute observables ranging from network parameters to
antenna and scattering parameters.

However, the study of real-life interactions often requires the
consideration of multiple configurations. Further, in many cases, the
actual configuration is not entirely known due to a lack of information
or due to measurement errors. This variability is particularly significant
when dealing with highly sensitive models that depend on multiple
input variables: a slight modification of the configuration may produce
large variations of the observable, as is the case with resonant
structures.

A brute-force deterministic approach consisting in the systematic
execution of the model for every possible configuration is generally
ruled out by the cost implied by even a single execution of the
deterministic model and by the possibly large number of configurations
to analyze. These limitations motivate the use of a stochastic approach,
in which the configuration is assumed to vary randomly according
to a given probability distribution known a priori. As a result, the
observable becomes random and follows a probability distribution that
is yet unknown. Probability theory then provides a wide selection of
tools to characterize the distribution of the observable either partially
via statistical moments, or completely through its probability density
function (pdf) or its cumulative distribution function (cdf).

The range of applications of stochastic uncertainty-quantification
methods is broad and spans from random media propagation [3],
to bio-electromagnetics [4], antenna design [5] and electromagnetic
compatibility (EMC) [6]. In the latter domain, statistical methods
are commonly used to describe the field and power distributions in
mode-stirred reverberation chambers [7, 8]. Thin-wire setups, which
are ubiquitous as interconnections in modern-day electronics, are also
more and more prone to being analyzed stochastically [9, 10]. We
have successfully applied this modus operandi to thin-wire problems
by evaluating the first four statistical moments of the observable with
the aid of quadrature algorithms. The thus obtained statistics could be
post-processed using Chebychev’s inequality to obtain general bounds
of the distribution of the observable via its second-order moments [11]
or to quantify the likelihood of observing extreme samples using the
fourth-order moment, or kurtosis [12].

Although the second-order bounds hold for any random observable
with finite second-order moments, these bounds are in essence very
loose. Moreover, the use of the kurtosis as an indication of the
presence of outliers was performed by comparing the value of the
kurtosis to the reference value of 3, which corresponds to a Gaussian
distribution [13, p. 148]. This analysis did not quantify the probability
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of observing such outliers, nor did it indicate the distance from the
mean at which to expect these outliers. In this article, we will
address these shortcomings by resorting to higher-order moments and
to higher-order Chebychev inequalities. In addition to refining the
bounds on the probability distribution of the observable, this approach
allows for the estimation of the range of the observable by accurately
computed confidence intervals.

While higher-order moments reveal finer features about the
randomness of the observable, the ultimate goal is to determine the
distribution of the observable. To this end, the Maximum-Entropy
(MaxEnt) principle is particularly useful as it uses a sequence of
statistical moments to approximate the pdf of the observable [14].
However, to be applicable the MaxEnt principle requires the knowledge
of the range of the observable, which is not granted when dealing with
deterministic “black-box” models like the ones considered in this paper.
We will overcome this issue by using the estimates of the observable’s
range derived from the higher-order Chebychev inequalities. The
resulting MaxEnt pdf will thus provide the highest level of information
regarding the randomness of the observable. To the best of the authors’
knowledge, this is the first stochastic approach which uses Chebychev’s
higher-order inequalities to approximate the range of the observable
and then use this range estimate in a MaxEnt post-processing.

The outline of this article is as follows. Subsection 2.1 describes
the deterministic model used to represent the voltage induced at the
port of a thin-wire setup by an incident electromagnetic field. A
stochastic formalism is then adopted in Subsection 2.2 to account
for uncertainties in the interaction configuration and in the induced
voltage, which is the observable. As a result, statistical moments of
the observable can be computed via quadrature rules as explained
in Subsection 2.3. With these statistical moments at hand, higher-
order Chebychev inequalities are employed in Section 3 to bound the
probability distribution and the range of the observable. Next, in
Section 4, the use of the estimates of the range of the observable in a
maximum-entropy approach is described. The stochastic rationale is
then illustrated in Section 5 through the study of the voltage induced
by a random plane wave at the port of a thin-wire system that has a
randomly varying geometry and is connected to a random resistance.
Finally, conclusions are drawn in Section 6.
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2. STOCHASTIC MODEL

2.1. Deterministic Description of the Setup

The coupling between a thin-wire setup and an incident electromag-
netic field is a classical test case in EMC [15]. This problem is relevant
for the analysis of the electromagnetic interference signals induced in
cables that connect devices such as control computers and actuators,
e.g., in buildings, in automobiles or in aircrafts [16]. In many cases of
practical interest, these interconnecting cables are hidden from view
being either buried or embedded inside walls of buildings or in the
fuselage of an aircraft. Further, even if a very precise cable rout-
ing CAD tool is used during the design, the degree of imprecision of
operators installing the cables will lead to a priori installation uncer-
tainties. Hence, in all these cases the exact geometrical layout of the
wire is generally not known in detail, which is a problem in a posteriori
modeling.

A generic model of electromagnetic coupling in free space between
a thin-wire system and a time-harmonic incident electromagnetic field
is sketched in Fig. 1. The configuration involves a thin wire Ωα located
above an infinite perfectly electrically conducting (PEC) ground plane.
The wire has a circular cross section with a diameter of 1 mm and,
over a distance of 1m, a variable shape described by its Cartesian
coordinates [xα(y), y, zα(y)], for any y ∈ [ym; yM ]. The vector α, which
describes the geometry of Ωα, belongs to the known domain A ⊂ RL.
This device possesses two port regions that have negligible dimensions
compared to the wavelength. One of the port regions is connected to
a resistance denoted R ∈ R ⊂ R+, while the other port is in an open-
circuit state. The parameters of the incident electric field Ei

β, such as
its amplitude, its polarization ψ, or its direction of propagation (θ, φ)
in a spherical coordinate system, are defined through the vector β,
which belongs to the known domain B ⊂ RM .

The electromagnetic coupling is monitored via the observable
γ = |Ve|, which corresponds to the magnitude of the voltage induced at
the open-circuit port of the wire. In a shielding context, Ve represents
an equivalent Thévenin voltage and indicates the susceptibility of the
setup to fields induced at its port by external sources [17]. For any
deterministic configuration (α,R,β), the observable is defined as

γ(α,R, β) = |Ve(α,R,β)| = 1
I0

∣∣∣∣∣∣

∫

r∈Ωα

Jα,R(r) ·Ei
β(r)dl(r)

∣∣∣∣∣∣
, (1)

where the current distribution Jα, R is induced on Ωα in the absence of
Ei

β, when a current source I0 is impressed at the open-circuit port of
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Figure 1. Interaction configuration: Thin wire Ωα parameterized
by the vector α ∈ A, resistance R ∈ R and incident field Ei

β

parameterized by the vector β = (θ, φ, ψ, |Ei
β|) ∈ B.

the wire (left in Fig. 1) [18]. The line current Jα,R could be computed
using transmission-line (TL) theory [19]. However, special care would
be required to adapt the TL equations to the non-straight geometry
of the wire Ωα, and to properly account for the radiation effects that
occur along the line and in the load R [20, 21]. Instead, a full-wave
model is used to obtain accurate results. A Pocklington electric-
field integral equation (EFIE) associated with the transmitting state is
solved by the method of moments to obtain Jα,R [22, 23]. This implies
the computation of a full impedance matrix and the solution of the
associated algebraic problem.

The definition of Ve highlights the nonlinear dependence of the
observable on the parameters of the configuration, since γ(α,R, β)
depends on α through Jα,R and the support Ωα of the integral, on the
resistance R through the Jα,R, while the effect of β appears through
Ei

β. Further, for any given configuration (α,R, β), the evaluation of
the associated response γ(α,R, β) involves a numerical cost, which
stems from the establishment and the solution of the EFIE.
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2.2. Uncertainties and Randomization

The deterministic model described by Eq. (1) permits the computation
of the observable for any given configuration (α,R,β). However, in the
presence of uncertainties, the actual value of (α,R, β) is undetermined
in A×R× B.

The geometrical uncertainty of the wire translates into a variation
of the total length of the thin wire. This model is mainly relevant
for problems where the actual shape and length of the wire are not
entirely known. The indetermination of the wire length has a major
influence on the frequencies at which resonances occur [11]. In addition,
the load R influences strongly the presence of resonance as well as
the value of the observable at those frequencies: while an adapted
line will exhibit little or no resonance, a mismatched impedance
will produce resonances with large quality factors, particularly if the
line is terminated by an open- or short-circuit [21]. The varying
polarization of Ei

β will also impact the amplitude of the observable
around resonance frequencies [21]. Hence, the model used here is an
example that shows many aspects of geometrical and field uncertainties
at the same time. In this way, one captures both uncertain resonance
frequencies, different exposures of the wires to the field and different
load conditions.

By applying a stochastic rationale, the indetermination of
(α,R,β) in A×R×B is assumed to be random. First, all the uncertain
input parameters, i.e., the uncertain components of (α,R,β), are
gathered in the vector u, which belongs to the set U ⊂ A × R × B.
For instance, if only the components α1 and β1 are random, then the
vector u = (α1, β1) of random inputs will belong to the domainA1×B1,
which is a sub-domain of R2. The vector u is assumed to be randomly
distributed in U according to a known probability distribution PU that
is chosen a priori. The choice of PU is governed by the information
available on the variations of u in U .

Due to the randomness of u, the observable γ, which is a
function of u, becomes random. To mark this induced randomness,
the observable is written as γ(u). Unlike u, which is completely
characterized by PU , the probability distribution Pγ of γ has yet to
be determined. However, since the definition of γ involves a numerical
model, expressing Pγ as a function of PU is a non-trivial mathematical
task [24, p. 36]. Hence, rather than aiming for a complete description
of the randomness of γ via Pγ , we focus on the statistical moments of
γ, which are computable and still provide valuable information about
the distribution of γ.
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2.3. Computation of Statistical Moments

The statistical moments of γ are obtained by considering a measurable
real-valued function h defined on R. The expectation E[h(γ)] of the
random variable h(γ) then reads [13, p. 209]

E[h(γ)] =
∫

U
h[γ(u′)]fU (u′)du′, (2)

where fU is the pdf of u. The right-hand side of Eq. (2) can
be determined numerically, since it consists of an integral over
a computable integrand h[γ(u′)]fU (u′) and a known domain of
integration U . With the aid of a quadrature rule QN , this integral
is approximated as

E[h(γ)] ≈ QN [h(γ)] =
N∑

n=1

h[γ(un)]fU (un)wn, (3)

where N is the complexity of the quadrature rule. The abscissae
un ∈ U and the positive weights wn > 0, for n = 1, . . . , N , are
defined by the type of quadrature algorithm employed [25, p. 114].
With stable quadrature rules, increasing N improves the accuracy of
the approximation in Eq. (3). However, N also represents the number
of evaluations of the deterministic model, which, as stated above, bears
a certain cost. To limit the increase of N , nested quadrature rules are
employed that allow for reusing samples of γ to refine the mesh of the
quadrature rule. Further, when multiple integrals need to be computed
simultaneously, the same quadrature rule is employed. Moreover, the
quadrature rule is chosen to efficiently handle integrals over the multi-
dimensional domain U , as is the case with a sparse-grid [26], a Monte-
Carlo [25, p. 205] or a space-filling-curve rule [11]. The convergence of
the quadrature rule is monitored through the relative modification of
QN [h(γ)] as the number of samples N is increased.

Following these guidelines, the first M statistical moments of γ
are computed by quadrature using Eq. (3) and then gathered in the
set

M(M) = {µm = E [γm] , m = 0, . . . ,M}. (4)

3. HIGHER-ORDER CHEBYCHEV CONFIDENCE
INTERVALS

The knowledge of the range G of γ is essential to determine the dynamic
range of the observable in response to the uncertainties that affect
the input variables (α,R, β). However, with an observable that is a
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nonlinear and non-monotonic function of the input variables (α,R, β),
G can only be obtained by evaluating the deterministic model over the
entire ensemble of possible configurations, viz. G = γ(A×R×B). The
computational effort required by such an operation is often prohibitive
for a numerical model. Instead, the statistical moments at hand,
viz. M(M), can be employed together with the theory of probability
to infer confidence domains, i.e., intervals in which the likelihood of
observing the observable is quantified.

The confidence domains are chosen as intervals centered about the
mean µ1 as follows G(r) = [µ1 − r σ;µ1 + r σ], where σ =

√
µ2 − µ2

1
is the standard deviation and r > 0. The confidence level Pconf(r) and
the exceedance probability Pexc(r) associated with G(r) are defined as

Pconf(r) = Pγ [γ ∈ G(r)] = Fγ(µ1 + rσ)− Fγ(µ1 − rσ), (5)
Pexc(r) = Pγ (|γ − µ1| > rσ) = 1− Pconf(r), (6)

where Fγ is the cdf of γ. Exceedance probabilities are particularly
valuable for risk and safety analyses. In an EMC context, Pexc(r)
indicates the likelihood of observing values of γ = |Ve| more than rσ
away from the mean µ1, and therefore the intensity of the interferences
induced at the port of the wire by the external incident field.

Without knowing Fγ , neither Pconf(r) nor Pexc(r) can be
evaluated. The Gaussian estimate PGauss(r) of Pexc(r) can be obtained
from Eq. (6) by replacing Fγ by a Gaussian cdf FGauss, with

FGauss(r) =
1
2

[
1 + erf

(
r − µ1√

2σ

)]
, for any r ∈ R. (7)

However, without additional information, Pγ cannot be assumed to
be Gaussian, particularly when dealing with models that are not such
that the Central-Limit Theorem applies [13, p. 278].

As an alternative, Chebychev’s second-order inequality can be
used to bound Pexc(r) as it states that, for any r > 0, [13, p. 151]

Pexc(r) = Pγ (|γ − µ1| > rσ) ≤ 1
r2

. (8)

In other words, the interval G(r) should contain at least
100 × (1 − 1/r2) % of the samples of γ. This type of asymptotic
bound is very useful as it holds for any random variable with finite
second-order moments. The inequality (8) is also rather conservative
as it states, e.g., that G(3) will contain at least 88.8% of the values
of γ, whereas for Gaussian random variables G(3) is known to contain
more than 99.7% of the samples.

Chebychev’s inequality can be refined to incorporate higher-
ordered moments as follows

Pexc(r) ≤ κ2n

r2n
= b2n(r), (9)
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for any n ∈ N \ {0} and r > 0 [13, p. 152]. The normalized moments
κ2n can be obtained from the moments µn about the origin via the
correspondence

κ2n = E

[(
γ − µ1

σ

)2n
]

=
1

σ2n

2n∑

`=0

(
2n
`

)
(−1)2n−`µ`µ

2n−`
1 ≥ 0. (10)

These normalized moments are dimensionless since they correspond to
the standardized variable γ̂ = (γ − µ1)/σ. Chebychev’s inequality (9)
holds also for oddly ordered moments κ2n+1 = E[|γ − µ1|2n+1]/σ2n+1.
However, due to the presence of the absolute value in their definition,
the oddly ordered normalized moments can no longer be expressed in
terms of the moments µn about the origin.

The right-hand side b2n(r) of the inequality (9) is meaningful only
once b2n(r) ≤ 1, i.e., when r ≥ rmin(2n) = κ

1/2n
2n . These minimum

values of r are ordered according to Lyapunov’s inequality [13, p. 152],
i.e.,

κ
1/2n
2n ≥ κ

1/2(n−1)
2(n−1) ≥ . . . ≥ κ

1/2
2 = 1. (11)

Hence, the higher the order of the Chebychev bound b2n, the larger the
minimum length of the confidence interval G[rmin(2n)]. At the same
time, the inequality (9) shows that as the length r of G(r) increases,
b2n(r) exhibits a much faster decay rate than b2(r), thereby leading to
tighter bounds for Pexc(r), or equivalently a higher level of confidence
in the domain G(r). The Chebychev inequalities ensure that b2n(r) is
an upper bound for Pexc(r), regardless of the distribution of γ, while it
is impossible to ascertain whether PGauss(r) is an upper or lower bound
for Pexc(r).

4. MAXIMUM-ENTROPY PRINCIPLE

Beyond the Chebychev bounds, the most complete way of quantifying
the randomness of γ is to determine the pdf of γ. This can be achieved
by resorting to a Maximum-Entropy (MaxEnt) method [14], which is
a robust means to approximate the yet unknown pdf fγ starting from
the statistical moments of γ. In this heuristic approach, every moment
in M(M) is regarded as the result of the evaluation of a functional ψk

on fγ , with

ψk[fγ ] =
∫

G
xk fγ(x)dx, for k = 0, . . . ,M. (12)
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The set M(M) represents the totality of our knowledge about fγ .
This knowledge can be quantified by Shannon’s entropy functional [13,
p. 654],

S[f ] = −
∫

G
f(x) ln [f(x)] dx, for f ∈ L1(G,R+), (13)

where L1(G,R+) is the Lebesgue space of positive-valued measurable
functions defined on G. The MaxEnt method states that among all
the possible pdfs that are compatible with the constraints gathered in
M(M), the least biased pdf is the one that maximizes the entropy S.
Hence, the MaxEnt pdf is found by solving the optimization problem

fγ,M = arg max
f ∈ L1(G,R+)

ψk[f ] = µk, for k = 0, . . . , M

S[f ], (14)

which is handled via Lagrange’s multiplier method [27, p. 195] and
yields the following density function [28]

fΛ,M (x) = exp

(
−

M∑

k=0

λkx
k

)
, for any x ∈ R. (15)

The particular form of fΛ,M in Eq. (15) leads to smooth pdfs, with
e.g., fΛ,1 being an exponential pdf, and fΛ,2 a Gaussian pdf.

To obtain the Lagrange factors Λ = (λ0, . . . , λM ), Eq. (15) is
inserted into the constraints expressed by Eq. (12), i.e.,

µk = ψk[fΛ,M ], for k = 0, . . . ,M, (16)
and the resulting system of nonlinear equations is solved for Λ via a
least-squares nonlinear regression algorithm [29, p. 607].

Equations (16) and (12) highlight the importance for the MaxEnt
technique of the evaluation of integrals over G, which is however
unknown. An alternative would consist in evaluating the integrals
over R rather than G. However, the resulting improper integrals would
be tedious to evaluate numerically, which in turn would hinder the
solution of Eqs. (16) by nonlinear regression. Conversely, if these
integrals are computed over a domain that is smaller than G, the
mismatch between the moments M(M) and the integrals ψk[fΛ,M ]
could produce false MaxEnt pdfs.

The alternative followed in this article employs the Chebychev
confidence intervals G(r), discussed in Section 3, as the domains of
integration. Given a threshold Pthr ∈ [0, 1], the radius rthr of the
confidence interval of level Pthr is the minimum value of r such that
Pexc(r) ≤ Pthr, i.e.,

rthr = min{r > 0, Pexc(r) ≤ Pthr}. (17)
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From the inequality (9), upper bounds for rthr can be obtained as

r2n,thr =
(

κ2n

Pthr

)1/2n

. (18)

By limiting Pthr to a sufficiently small value, the corresponding
Chebychev confidence intervals G(r2n,thr) will capture G without being
unnecessarily large domains of integration. Thus, using the Chebychev
bounds, the MaxEnt method can be applied in an adaptive manner
with respect to the range of the observable. To the best of the authors’
knowledge, this is the first stochastic approach which uses Chebychev’s
inequalities in conjunction with a Maximum-Entropy scheme.

The general steps followed in our stochastic rationale are
summarized in Fig. 2.
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318 Sy et al.

5. VOLTAGE INDUCED AT THE PORT OF A
THIN-WIRE SETUP

5.1. Configuration

The methods presented in the Sections 2–4 are now applied to study
the interaction between a PEC thin-wire setup and an incident plane
wave. With reference to Fig. 1, the axis of the wire Ωα is parameterized
by its Cartesian coordinates [xα(y), y, zα(y)], with

xα(y) = αx sin
(

π
y − ym

yM − ym

)
, in meters, (19a)

zα(y) = 0.05 + αz sin
(

π
y − ym

yM − ym

)
, in meters, (19b)

for any y ∈ [ym; yM ], where αx ∈ Ax = [−0.02; 0.02]m and
αz ∈ Az = Ax. This setup is connected to a resistance
R ∈ R = [0, 200]Ω. The geometrical model assumed in Eq. (19) can
be encountered in periodic setups used for instance as filters [30].

The incident electric field Ei
β is a plane wave, which propagates

along the direction (θ = 45◦, φ = 45◦) in a spherical coordinate
system, and which has an amplitude normalized to 1 V ·m−1. The
polarization ψ of Ei

β varies in the interval P = [0◦, 90◦], with ψ = 0◦

and ψ = 90◦ corresponding to parallel- and perpendicular-polarized
fields, respectively.

The observable γ = |Ve| is computed via Eq. (1), where the
current distribution Jα,R is obtained by solving an EFIE. For efficiency
purposes, a reduced-kernel EFIE [22] is employed together with
quadratic-segment basis functions that are well suited to represent
curved geometries [31]. In the present case, the surface of Ωα is meshed
into 224 elements for use in the method of moments (MoM). The mesh
of the straight wire Ωα=0 comprises segments that are 5 mm long.
Using a 2.4 GHz computer with an Intel Core i3 processor, a single
evaluation of |Ve| requires 145 ms, of which 115ms are devoted to the
construction and the solution of the MoM matrix.

5.2. Motivation for the Numerical Examples

To illustrate the significant effects that the uncertainties of the setup
have on the observable, the spectrum of the voltage induced at the port
of a straight wire Ωα=0 is plotted in Figs. 3(a) and 3(b) for a parallel-
and a perpendicular-polarized Ei

β, respectively. The frequency is swept
from f = 100 MHz (wavelength λ ≈ 3 m) to f = 500 MHz (λ ≈ 0.6m).
Lower or higher frequencies could be studied as well, provided that the
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deterministic model is accurate. Particularly at higher frequencies,
one has to make sure that the mesh of the thin wire remains fine
enough compared to the wavelength λ, e.g., with elementary segments
smaller than λ/10 ≈ 6 cm. Besides these deterministic limitations,
the stochastic method described in this article holds regardless of
the frequency, i.e., from kHz frequencies encountered, e.g., in power-
electronics applications, to GHz or higher frequencies used in remote-
sensing and telecommunications applications.

The graphs in Figs. 3(a) and 3(b) clearly show the differences
in the values of |Ve| for R ∈ {0Ω, 50Ω, 200 Ω} as can be seen
through the shift between the resonance frequencies of the short-circuit
case R = 0 Ω and the case R = 200Ω. At a frequency such as
f = 200 MHz, the variations of R produce more than two orders of
magnitude of changes in |Ve|. Compared to the short-circuit case
R = 0 Ω, higher values of R damp the peak value of |Ve| observed
at resonance frequencies. This damping effect is due to the power
dissipation that occurs in the resistance R, unlike the short-circuit case
where the traveling waves are reflected at the ends of the transmission
line [21]. Moreover, the values of |Ve| vary with the polarization of Ei

β.
Therefore, the uncertainty of the setup cannot be neglected.

In the remainder of this article, we focus our analysis on the
following three frequencies,

• f1 = 280 MHz, which is a resonance frequency for R = 200 Ω;
• f2 = 545 MHz, which is a non-resonance frequency; and
• f3 = 900 MHz, which is a resonance frequency for R = 0 Ω.
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Figure 3. (a) Voltage |Ve| induced by a parallel-polarized Ei
β,

i.e., ψ = 0◦. (b) A perpendicular-polarized Ei
β, i.e., ψ = 90◦.

Frequencies f1 = 280 MHz, f2 = 545MHz and f3 = 900 MHz, where
the stochastic analysis will be conducted.
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The study of these frequencies will allow us to study the effect of
the frequency on the uncertainty of the observable. In particular,
a comparison of the resonances at f1 and f3 will show whether
the variations of the setup and the incident field lead to similar
distributions for the induced voltage.

5.3. Randomization

With the notations of Subsection 2.2, the vector of random input
parameters is defined as u = (αx, αz, R, ψ) and it belongs to the domain
U = Ax × Az × R × P. The vector u is assumed to be random in U
according to a uniform probability distribution PU . The components
of u are assumed to be mutually statistically independent.

The general steps sketched in Fig. 2 are now followed to propagate
the randomness of the input u through the electromagnetic model and
to quantify the uncertainty of the observable |Ve|.

5.4. Computation of Statistical Moments

The first 14 statistical moments of |Ve| are computed following the
rationale presented in Subsection 2.3. To properly handle the various
multi-dimensional integrals that are computed, a Monte-Carlo (MC)
rule is used. As explained in Subsection 2.3, nested grids are used in the
quadrature algorithm for numerical-efficiency purposes, which implies
that the complexity is N ≡ 2` + 1. The accuracy of the quadrature
rule is then evaluated for each of the 14 integrals that define the
moments of |Ve|, by comparing the relative variation of the quadrature
approximation as the complexity increases from 2` +1 to 2`+1 +1. The
maximum number of function evaluations is set at Nmax = 105.

Figure 4 displays the complexity N|Ve| required to compute
the statistical moments with a target maximum relative error
Emax = 10−2. The complexity is shown for the evaluation of the
moments about the origin µm and for the evaluation of the normalized
moments κm. The computation of higher-order moments implies a
larger complexity as indicated by the increase of N|Ve|(m) with the
order m of the moment µm. Overall, computing the moments about
the origin is faster than the evaluation of the normalized moments,
particularly for odd orders m. This difference in performance is due
to the fact that the integrands defining odd normalized moments (see
Eq. (10)) are centered about the origin and they take positive as well
as negative values, which in turn slows down the convergence of the
quadrature rule.

The mean µ1, the standard deviation σ and the kurtosis κ4 of |Ve|
are listed in Table 1 as diagnostic moments. The values of the kurtosis
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Figure 4. Complexity N|Ve| of the Monte-Carlo rule to compute
the first 14 statistical moments of |Ve| with a relative accuracy of
10−2. Moments about the origin (ori) and normalized moments (nor).
Results for the frequencies f1 = 280 MHz (top), f2 = 545MHz (middle)
and f3 = 900 MHz (bottom).

are given both for the case where κ4 is evaluated directly by quadrature
(κnor

4 ) and for the case where it is deduced from the moments about
the mean (κori

4 ) via Eq. (10). Table 1 also contains the reference values
of the statistical moments, which are obtained from a larger dataset
that comprises 4× 105 samples of the observable.

This table confirms the accuracy of the computation of the
statistical moments and it provides some insight in the distribution
of |Ve| at f1, f2 and f3. The frequency f2 is characterized by a high
concentration of the values of |Ve| around their mean value as indicated
by the small values of σ(f2) and κ4(f2). The first resonance produces
the largest value of σ, even though κ4(f1) is slightly larger than 3
thereby implying a slightly wider spread than a Gaussian spread. Even
though σ(f3) is three times smaller than σ(f2), the fact that κ4(f3) is



322 Sy et al.

Table 1. Diagnostic statistical moments of |Ve|.
n f1 f2 f3

µref
1 [V ] 0.335 0.031 0.108
µ1 [V ] 0.335 0.031 0.108
σref [V ] 0.264 0.018 0.088
σ [V ] 0.264 0.018 0.088
κref

4 3.88 2.49 9.38
κnor

4 3.88 2.45 9.38
κori

4 3.90 2.53 9.38

conversely 2.5 times larger than κ4(f2) indicates the presence of more
outliers at f3 than at f2 and f1, as explained in [12, 32].

5.5. Higher-order Chebychev Bounds

The higher-order Chebychev bounds are displayed in Figs. 5–7,
together with the Gaussian estimate PGauss discussed in Section 3.
To serve as a reference, the actual exceedance probability Pexc, ref(r)
is estimated empirically using an ensemble of Ndet = 4 × 105 voltage
samples obtained from configurations that are drawn randomly via a
random-number generator. The reference and Gaussian values of Pexc

are obtained from Eq. (6) where Fγ is replaced by the empirical cdf
Fref and the Gaussian cdf FGauss, respectively.

These graphs point out the conservative nature of PGauss as
opposed to b2 which is very loose. The slopes of higher-order bounds
become steeper as the order of the normalized moments increases.
Higher-order Chebychev bounds become meaningful, i.e., below 1, later
than lower-order bounds, as expected from Lyapunov’s inequality (11).
At f1, for instance, if r = 2, the only bounds that are lower than 1 and
hence exploitable are b2, b4 and b6.

The interpretation of the kurtosis given in the preceding section
is confirmed by these plots, i.e., the larger the value of κ4, the
wider the spread of |Ve|, measured in terms of σ. Accordingly, the
Gaussian bound slightly underestimates the actual spread at f1 and
overestimates the spread at f2. At f3, PGauss clearly underestimates
Pexc once r ≥ 2 and fails to account for the larger spread of |Ve|.

Moreover, b2 is insensitive to the randomness of the observable,
as expected from Eq. (8). Conversely, the higher-order bounds follow
the randomness of the observable as can be seen for the low spread at
f2, and for the large spread at f3.
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5.6. Dimensioning Application

The bounds in Figs. 5–7 are now employed for dimensioning purposes
to estimate the range of |Ve| via confidence intervals. More specifically,
the objective is to estimate the 99.99% confidence interval, i.e., the
domain with an exceedance probability of 0.01%, which is defined as

G(r0.01%) = [0;V0.01%], with V0.01% = µ1 + r0.01% × σ,

where r0.01% is determined from Eq. (18). The values of r0.01% and
V0.01% are listed in Table 2.

The Chebychev bounds lead to an over-dimensioning that is
particularly broad when only two moments are used. The bounds
improve significantly with higher-order moments. In contrast, the
Gaussian bounds do not offer any guarantee as to whether they under-
or over-estimate the spread of the variable, as shown by the values
obtained at f1 and f3.

The significance of Table 2 can be understood, e.g., in
shielding applications where the objective is to protect any device
connected at the port of the wire from large induced interferences.
Assuming that |Ve| follows a Gaussian distribution would lead to
an insufficient protection against the induced perturbation at the
resonance frequencies f1 and f3. On the contrary, once six or more
moments are employed in Chebychev’s inequality, accurate upper
estimates of the range of |Ve| are obtained.
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Pγ [|γ − µ1| > rσ]: Reference value (ref), Gaussian estimate (Gauss),
Chebychev bounds ({b2m}m=1,...,7).
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Figure 6. Frequency f2: Exceedance probability Pexc(r): Ref-
erence value (ref), Gaussian estimate (Gauss), Chebychev bounds
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Table 2. Estimation of the range of |Ve| via 99.99% confidence interval.

f1 f2 f3

r0.01% V0.01% r0.01% V0.01% r0.01% V0.01%

Ref. 4.3 1.475 V 3.3 0.089V 5.0 0.548V
Gauss. 3.9 1.365 V 3.9 0.099V 3.9 0.451V

b2 100 26.750V 100 1.792V 100 8.900V
b4 14.1 4.059 V 12.6 0.253V 17.6 1.655V
b6 8.2 2.500 V 6.8 0.150V 10.6 1.040V
b8 6.6 2.078 V 5.2 0.122V 8.3 0.838V
b10 5.8 1.867 V 4.5 0.110V 7.3 0.750V
b12 5.4 1.761 V 4.2 0.105V 6.7 0.697V
b14 5.1 1.682 V 3.9 0.099V 6.3 0.662V

5.7. Maximum-entropy Results

The MaxEnt method described in Section 4 is now applied. The
nonlinear regression to compute the Lagrange multipliers is performed
using a Levenberg-Marquardt algorithm [27, p. 100] (function “nlinfit”
in MATLAB r). First, focusing on the frequency f1, the effect on the
MaxEnt pdfs of the choices made about the range of |Ve| are illustrated.
Next, the refinement of the MaxEnt results by higher-order moments
is demonstrated at f2 and f3. Lastly, the MaxEnt pdfs are used to
determine the cdf of |Ve|, from which quantiles are deduced.
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5.7.1. Importance of the Range of |Ve|
The first six moments of |Ve|, at the frequency f1 = 245 MHz, are used
to compute the MaxEnt pdf fΛ,6. In the MaxEnt algorithm, the range
of |Ve| used in the integrals of Eq. (16) is chosen as G(r) = [0;µ1 +rσ],
with µ1 = 0.335V, σ = 0.264 V and r ∈ {3, 4, 5, 8}. According to
Fig. 5, G(3) and G(4) are subsets of the actual range G = [0; 1.519]V,
whereas G(5) and G(8) are wider than G. Moreover, based on
Table 2, the 99.99% confidence intervals obtained assuming a Gaussian
distribution for |Ve| would be G(3.9) ≈ G(4), while the Chebychev
bound b6 would lead approximately to the interval G(8.2) ≈ G(8).
Fig. 8 depicts fΛ,6 for the different supports G(r), with r ∈ {3, 4, 5, 8}.
The severe consequences of an underestimation of G can be seen
through the pdf obtained using G(3). The pdf obtained with G(4)
is accurate over G(4) but diverges once |Ve| exceeds the upper limit
of this interval. For G(5) and G(8), the resulting pdfs are accurate
when compared to fref over the entire domain G. Hence, the over-
dimensioning through Chebychev’s bounds is an advantage for the
computation of the MaxEnt pdf.

5.7.2. Increasing the Number of Moments

To illustrate the refinement of the MaxEnt pdfs via higher-order
moments, the pdfs fΛ,4 and fΛ,8 are computed at f2 = 545 MHz. The
range of |Ve| is chosen according to Table 2 by using first the Gaussian
estimate which leads to G(3.9) = [0; 0.099]V, and the Chebychev
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bound b8, which leads to G(5.2) = [0; 0.122]V. The results are plotted
in Fig. 9.

Since both G(3.9) and G(5.2) contain the range of |Ve|, which is
G = [0; 0.091] V, both choices lead to accurate MaxEnt pdfs. With
reference to fref , fΛ,4 and fΛ,8 succeed in capturing the support of
the pdf of |Ve|. Compared to fΛ,4, the use of higher-order statistical
information in fΛ,8 enables it to precisely reproduce the slope of fref ,
particularly for |Ve| ≤ 0.05V.
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The same procedure is applied at the frequency f3 = 900MHz,
where the range of the observable is now G = [0.029; 0.554]V. A
Gaussian 99.99% confidence interval under-estimates G via G(3.9) =
[0; 0.451]V, whereas b8 over-estimates G via G(8.3) = [0; 0.838]V.
Figs. 10(a) and 10(b) show that the choices of G(3.9) or G(8.3) lead to
slight changes in the resulting fΛ,4, which occur particularly around the
tail of the pdf. For fΛ,8 however, the Gaussian under-estimate G(3.9)
prevents the MaxEnt algorithm from converging to a suitable pdf. On
the contrary, with G(8.3) the pdf fΛ,8 is accurate and approximates the
tail of fref more accurately than fΛ,4, as demonstrated by Fig. 10(b).
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Table 3. Quantile q99 of |Ve| and relative error with respect to qref .

f1 f2 f3

q99 [V] εrel q99 [V] εrel q99 [V] εrel

Ref. 1.133 - 0.074 - 0.462 -
Gauss. 0.949 −0.162 0.073 −0.014 0.313 −0.323
M = 2 1.136 0.003 0.076 0.027 0.380 −0.178
M = 3 1.131 −0.002 0.076 0.027 0.377 −0.184
M = 4 1.131 −0.002 0.073 −0.014 0.445 −0.037
M = 5 1.131 −0.002 0.073 −0.014 0.454 −0.017
M = 6 1.137 0.004 0.074 0 0.459 −0.007
M = 7 1.137 0.004 0.074 0 0.459 −0.007
M = 8 1.137 0.004 0.074 0 0.464 0.004

The difficulty for fΛ,8 to converge when the support used in the
MaxEnt algorithm is G(3.9) is caused by the difficulty for the algorithm
to find a suitable set of Lagrange coefficients that would produce a
pdf with higher-order moments matching the computed higher-order
moments. This example is yet another illustration of the advantage
of resorting to the Chebychev bounds to estimate the range of the
observable.

5.7.3. Quantiles of |Ve|
Once the pdf f|Ve| of |Ve| has been accurately approximated by MaxEnt,
the cumulative distribution function (cdf) F|Ve| can be obtained as
follows

F|Ve|(v) =

v∫

−∞
f|Ve|(v

′)dv′, for any v ∈ R. (20)

This cdf is then used to evaluate the 99% quantile of |Ve|, i.e., the value
q99 of |Ve|, for which F|Ve|(q99) = 0.99. The values of q99 obtained from
the MaxEnt pdf of |Ve| are listed in Table 3 together with the quantiles
qref and qGauss obtained from the cdf Fref and a Gaussian cdf FGauss,
respectively.

The relative error between the estimated q99 and the reference
q99 is also provided in Table 3. This metric shows the magnitude
of the error made by assuming a Gaussian distribution over R for
|Ve|, as evidenced by the large under-estimations of q99 at f1 and f3.
Although the MaxEnt cdf FΛ,2 is Gaussian, its definition also includes
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information about the range of |Ve| via the MaxEnt algorithm. This
additional item of information explains the better accuracy of FΛ,2,
compared to FGauss, for the evaluation of q99. The numbers in Table 3
also highlight the added value of higher-order moments in the MaxEnt
algorithm, even at f3, which involves a relatively rough pdf.

Overall, the MaxEnt results yield finer statistical information than
the bounds given by Chebychev’s inequality. In a design process, if
the objective is to accurately estimate the dynamic range of |Ve|, the
value of q99 should be privileged. On the other hand, in a shielding
application where the objective is to protect oneself form large induced
voltages, the confidence intervals obtained via Chebychev’s inequalities
can be chosen as conservative upper bounds for the range of the induced
voltage.

In a decision-making process where the uncertainty budget needs
to be assessed, the results in Subsections 5.4–5.7 show that by assuming
a Gaussian distribution for |Ve|, one can still obtain accurate results
at the non-resonance frequency f2. However, the limitations of such
an assumption are clearly visible once resonances appear, i.e., at f1

and f3. The occurrence and intensity of resonances requires specific
conditions both in terms of the electrical length of the thin wire and in
the value of the impedance R [19, p. 254–257], [11]. Hence, at f1 and
f3, due to the uncertainty of the geometrical and physical properties
of the wire and the polarization variations of the incident field, only
a few configurations will produce resonances, i.e., large values of |Ve|.
This explains the more pronounced right-skewness and the “heavier”
tail of the pdf of |Ve| at f1 and f3.

6. CONCLUSION

We have presented and illustrated a stochastic method to quantify
uncertainties in computational electromagnetic engineering. This
method, which is based on the computation and the use of higher-
order moments of the observable, refines the traditional second-order
Chebychev inequality and produces accurate upper bounds that are
globally valid.

The study of the induced voltage of a thin-wire setup affected
by geometrical and physical uncertainties has been conducted. The
computation of higher-order moments comes at the expense of a larger
complexity, even though the Monte-Carlo algorithm copes well with the
increasing roughness of the integrals that define higher-order moments.

The thin-wire test case provides various examples of uncertainties
owing to its resonance frequencies, which are highly sensitive to
the actual configuration and produce significant modifications of the
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observable. In all these cases, the higher-order Chebychev bounds
have proved to adapt well to the nature of the distribution of the
observable, unlike a fitted Gaussian distribution. The availability
of these bounds has a practical value for decision making processes
such as exceedance probabilities or confidence intervals. Moreover, the
conservative nature of the Chebychev bounds allows for the use, in a
range-adaptive manner, of statistical post-processing tools such as the
Maximum-entropy principle, as illustrated in this paper.

More generally, the results obtained in this article encourage the
use of a two-stage approach wherein the higher-order moments are first
used to compute Chebychev bounds and obtain confidence intervals.
Next, these confidence intervals should be used in a MaxEnt scheme to
accurately approximate the pdf and the cdf of the observable, thereby
achieving a complete quantification of the stochastic uncertainties of
the problem. The usefulness of these tools has been illustrated in an
EMC context.
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