Vol. 33
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-06-21
Tunable Wavelength Demultiplexer for DWDM Application Using 1-d Photonic Crystal
By
Progress In Electromagnetics Research Letters, Vol. 33, 27-35, 2012
Abstract
Transmission characteristics of 1-D photonic crystal (PC) structure with a defect have been studied. We consider a Si/ZnS multilayer system. We also consider the refractive index of both layers to be dependent on temperature and wavelength simultaneously. The refractive indices of Si and ZnS layers are functions of temperature as well in the wavelength of incident light. This property can be used while tuning defect modes at desired wavelength. As defect modes are function of temperature, one can tune the defect modes to desired wavelength. It is found that the average change in central wavelength of each defect mode is 0.07 nm/K. This property can be exploited in the design of a tunable wavelength demultiplexer for DWDM application in optical communication.
Citation
Arun Kumar, Bhuvneshwer Suthar, Vipin Kumar, Khundrakpam Saratchandra Singh, and Anami Bhargava, "Tunable Wavelength Demultiplexer for DWDM Application Using 1-d Photonic Crystal," Progress In Electromagnetics Research Letters, Vol. 33, 27-35, 2012.
doi:10.2528/PIERL12042009
References

1. Minowa, J. and Y. Fujii, "Dielectric multilayer thin-film filters for WDM transmission systems," J. of Lightwave Technol., Vol. 1, 116, 1983.
doi:10.1109/JLT.1983.1072070

2. Romero, R., O. Frazao, F. Floreani, L. Zhang, P. V. S. Marques, and H. M. Salgado, "Chirped fibre Bragg grating based multiplexer and demultiplexer for DWDM applications," Opt. Lasers Eng., Vol. 43, 987, 2005.
doi:10.1016/j.optlaseng.2004.10.001

3. Fukazawa, T., F. Ohno, and T. Baba, "Very compact arrayed-waveguide-grating demultiplexer using Si photonic wire waveguides ," Jap. J. Appl. Phys., Vol. 43, L673, 2004.
doi:10.1143/JJAP.43.L673

4. Liu, Y., F. Zhou, D. Z. Zhang, and Z. Y. Li, "Energy squeeze of ultrashort light pulse by Kerr nonlinear photonic crystals," Chin. Phys. Lett., Vol. 26, 014208, 2009.
doi:10.1088/0256-307X/26/1/014208

5. Suthar, B. and A. Bhargava, "Tunable multi-channel filtering using 1-D photonic quantum well structures," Progress In Electromagnetics Research Letters, Vol. 27, 43, 2011.
doi:10.2528/PIERL11072208

6. Bhargava, A. and B. Suthar, "Optical switching in Kerr nonlinear chalcogenide photonic crystal," J. Ovonic Research, Vol. 5, 187, 2009.

7. Suthar, B., V. Kumar, K. S. Singh, and A. Bhargava, "Tuning of photonic band gaps in one dimensional chalcogenide based photonic crystal," Opt. Commun., Vol. 285, 1505, 2012.
doi:10.1016/j.optcom.2011.10.047

8. Kumar, V., K. S. Singh, S. K. Singh, and S. P. Ojha, "Broadening of omnidirectional photonic band gap in Si-based one-dimensional photonic crystals," Progress In Electromagnetics Research M, Vol. 14, 101, 2010.
doi:10.2528/PIERM10062807

9. Srivastava, S. K. and S. P. Ojha, "Omnidirectional reflection bands in one-dimensional photonic crystal structure using fluorescence films ," Progress In Electromagnetics Research, Vol. 74, 181, 2007.
doi:10.2528/PIER07050202

10. Zhao, Y.-N., K.-Z. Li, X.-H. Wang, and C.-J. Jin, "A compact in-plane photonic crystal channel drop filter," Chin. Phys. B, Vol. 20, 074210, 2011.
doi:10.1088/1674-1056/20/7/074210

11. Habibiyan, H., H. Ghafoori-Fard, and A. Rostami, "Tunable all-optical photonic crystal channel drop filter for DWDM systems," J. of Opt. A: Pure and Appl. Opt., Vol. 11, 065102, 2009.
doi:10.1088/1464-4258/11/6/065102

12. Lam, C. F., R. B. Vrjen, P. P. L. Chang-Chien, D. F. Sievenpiper, and E. Yablonovitch, "A tunable wavelength demultiplexer using logarithmic filter chains," J. of Lightwave Technol., Vol. 16, 1657, 1998.
doi:10.1109/50.712249

13. http://www.laserfocusworld.com/articles/print/volume-37/issue-7/features/optical-coatings/wavelength-multiplexers-use-multila-ye.

14. Gerken, M. and D. A. B. Miller, "Wavelength demultiplexer using the spatial dispersion of multilayer thin-film structures," IEEE Photonics Technology Letters, Vol. 15, 1097, 2003.
doi:10.1109/LPT.2003.815318

15. Yeh, P., Optical Waves in Layered Media, John Wiley and Sons, New York, 1988.

16. Born, M. and E. Wolf, Principle of Optics, 4th Ed., Pergamon, Oxford, 1970.

17. Ghosh, G., Handbook of Thermo-optic Coefficients of Optical Materials with Applications , Academic Press, San Diego, CA, USA, 1997.

18. Li, H. H., "Refractive index of silicon and germanium and its wavelength and temperature derivatives ," J. Phys. Chem. Ref. Data, Vol. 9, 561, 1980.
doi:10.1063/1.555624

19. Li, H. H., "Refractive index of ZnS, ZnSe and ZnTe and its wavelength and temperature derivatives ," J. Phys. Chem. Ref. Data, Vol. 13, 103, 1984.
doi:10.1063/1.555705