Vol. 33
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-06-21
Quasi-Isotropic Approximation of Geometrical Optics Method with Applications to Dense Plasma Polarimetry
By
Progress In Electromagnetics Research Letters, Vol. 33, 13-25, 2012
Abstract
Basic equations of quasi-isotropic approximation (QIA) of geometrical optics method are presented, which describe electromagnetic waves propagation in weakly inhomogeneous and weakly anisotropic media. It is shown that in submillimiter range of electromagnetic spectrum plasma in all modern thermonuclear reactors, both acting and under construction, manifest properties of weakly inhomogeneous and weakly anisotropic medium, even for extreme electron density Ne ~ 1014 cm-3 and magnetic field B0 ~ 5 T accepted for project ITER. In these conditions QIA serves as natural theoretical basis for plasma polarimetry in tokamaks and stallarators. It is pointed out that Stokes vector formalism (SVF), widely used in polarimetry, can be derived from QIA in a generalized form, admitting the rays to be curvilinear and torsiened. Other important result of QIA is development of angular variables technique (AVT), which deals directly with angular parameters of polarization ellipse and operates with the system of two differential equations against three equations in form of SVF.
Citation
Yury A. Kravtsov, and Bohdan Bieg, "Quasi-Isotropic Approximation of Geometrical Optics Method with Applications to Dense Plasma Polarimetry," Progress In Electromagnetics Research Letters, Vol. 33, 13-25, 2012.
doi:10.2528/PIERL12032504
References

1. Boboc, A., M. Gelfusa, A. Murari, P. Gaudio, and JET-EFDA Contributors, "Recent developments of the JET far-infrared interferometer-polarimeter diagnostic," Rev. Sci. Instrum., Vol. 81, 10D538, 2010.
doi:10.1063/1.3478146

2. Bieg, B., M. Hirsch, and Y. A. Kravtsov, "Numerical modeling of polarization effects in a plasma at the W7-X stellarator," Scientific Journals Maritime University of Szczecin, Vol. 26, No. 98, 5-9, 2011.

3. Donne, A. J. H., et al. "Chapter 7: Diagnostics," Nucl. Fusion, Vol. 47, S337-S384, 2007.
doi:10.1088/0029-5515/47/6/S07

4. Wesson, J., Tokamaks, Clarendon Press, Oxford, 2004.

5. Kravtsov, Y. A., "Quasi-isotropic geometrical optics approximation," Sov. Phys. --- Doklady, Vol. 13, 1125-1127, 1969.

6. Kravtsov, Y. A. and Y. I. Orlov, Geometrical Optics of Inhomogeneous Media, Springer, Berlin, 1990.

7. Kravtsov, Y. A., Y. A., O. N. Naida, and A. A. Fuki, "Waves in weakly anisotropic 3D inhomogeneous media: Quasi-isotropic approximation of geometrical optics," Physics-Uspekhi, Vol. 39, 129-154, 1996.
doi:10.1070/PU1996v039n02ABEH000131

8. Fuki, A. A., Y. A. Kravtsov, and O. N. Naida, Geometrical Optics of Weakly Anisotropic Media, Gordon & Breach, London, NY, 1997.

9. Marco, F. D. and S. E. Segre, "The polarization of an em wave propagating in a plasma with magnetic shear," Plasma Phys., Vol. 14, 245-252, 1972.
doi:10.1088/0032-1028/14/3/002

10. Segre, S. E., "A review of plasma polarimetry --- Theory and methods," Plasma Phys. Contr. Fusion, Vol. 41, R57-R100, 1999.
doi:10.1088/0741-3335/41/2/001

11. Segre, S. E., "New formalism for the analysis of polarization evolution for radiation in a weakly nonuniform, fully anisotropic medium: A magnetized plasma ," J. Opt. Soc. Am. A, Vol. 18, 2601-2606, 2001.
doi:10.1364/JOSAA.18.002601

12. Czyz, Z. H., B. Bieg, and Y. A. Kravtsov, "Complex polarization angle: Relation to traditional polarization parameters and application to microwave plasma polarimetry," Phys. Let. A, Vol. 368, 101-107, 2007.
doi:10.1016/j.physleta.2007.03.055

13. Kravtsov, Y. A., B. Bieg, and K. Y. Bliokh, "Stokes-vector evolution in a weakly anisotropic inhomogeneous medium," J. Opt. Soc. Am. A, Vol. 24, No. 10, 3388-3396, 2007.
doi:10.1364/JOSAA.24.003388

14. Kravtsov, Y. A., B. Bieg, K. Y. Bliokh, and M. Hirsch, "Basic theoretical methods in microwave plasma polarimetry: Quasi-isotropic approximation, stokes vector formalism and complex polarization angle method," AIP Conference Proceedings, Vol. 993, 143-150, 2008.
doi:10.1063/1.2909096

15. Kravtsov, Y. A., J. Chrzanowski, and B. Bieg, "New technique in plasma polarimetry: Evolution equations for angular parameters `amplitude ratio --- Phase difference' of polarization ellipse," J. Plasma Physics, Vol. 78, No. 1, 87-91, 2012.
doi:10.1017/S0022377811000432

16. Kravtsov, Y. A. and J. Chrzanowski, "Modulation and suppression of weak Cotton-Mouton effect by Faraday rotation," The European Physical Journal D --- Atomic, Molecular, Optical and Plasma Physics, Vol. 63, No. 1, 129-133, 2011.

17. Kravtsov, Y. A. and J. Chrzanowski, "Modulation of weak Cotton-Mouton effect in conditions of strong Faraday rotation," Scientific Journals Maritime University of Szczecin, Vol. 26, No. 98, 47-51, 2011.

18. Kravtsov, Y. A., J. Chrzanowski, and D. Mazon, "Non-conventional procedure of polarimetry data inversion in conditions of comparable Faraday and Cotton-Mouton effects ," Fusion Engineering and Design, Vol. 86, No. 6-8, 1163-1165, 2011.
doi:10.1016/j.fusengdes.2011.04.065