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Abstract—Basic equations of quasi-isotropic approximation (QIA)
of geometrical optics method are presented, which describe electro-
magnetic waves propagation in weakly inhomogeneous and weakly
anisotropic media. It is shown that in submillimiter range of elec-
tromagnetic spectrum plasma in all modern thermonuclear reactors,
both acting and under construction, manifest properties of weakly in-
homogeneous and weakly anisotropic medium, even for extreme elec-
tron density Ne ∼ 1014 cm−3 and magnetic field B0 ∼ 5T accepted
for project ITER. In these conditions QIA serves as natural theoret-
ical basis for plasma polarimetry in tokamaks and stallarators. It is
pointed out that Stokes vector formalism (SVF), widely used in po-
larimetry, can be derived from QIA in a generalized form, admitting
the rays to be curvilinear and torsiened. Other important result of
QIA is development of angular variables technique (AVT), which deals
directly with angular parameters of polarization ellipse and operates
with the system of two differential equations against three equations
in form of SVF.

1. INTRODUCTION

Polarimetry of dense plasma in modern thermonuclear reactors, like
largest working tokamak JET (Joint European Tor, Culham, UK),
stellarator W7-X, which is under construction in Greifswald, Germany,
and tokamak ITER (International Thermonuclear Experimental
Reactor, Cadarache, France) uses, or will use, electromagnetic waves
of submillimeter wavelength range: λ ∼ 0.1 mm [1–3]. Plasma
in projected thermonuclear reactor ITER will have electron density
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Ne ∼ 1014 cm−3 and magnetic field about 5T [3, 4]. In submillimeter
range of electromagnetic spectrum such plasma will demonstrate
properties of weakly inhomogeneous and weakly anisotropic medium.
Electromagnetic wave propagation of this kind of media might be
adequately described by a quasi-isotropic approximation (QIA) of
geometrical optics method. QIA differs from traditional method of
geometrical optics by introducing additional small parameter µA which
characterizes degree of anisotropy [5]. Very brief outline of QIA one
can found in the book [6]. More deep and more wide analysis of QIA
is presented in the review paper [7] and in the book [8], where also
are discussed some applications of QIA in different physics fields (e.g.,
radio wave propagation through Earth ionosphere and extraterrestrial
moving plasma, phenomenon of normal modes conversion, acoustic
phenomena in weakly anisotropic elastic media, birefringence of spinor
wave function in a magnetic field (The Stern-Gerlach effect)).

This paper pursue two aims. First of all we would like to show
that in submillimeter range of wavelengths plasma in large modern
thermonuclear reactors possesses properties of weakly inhomogeneous
and weakly anisotropic medium, so that QIA may serve as adequate
theoretical basis for plasma polarimetry. We intend also to describe
new approach in plasma polarimetry, which deals directly with
evolution of angular parameters of polarization ellipse, omitting
analysis of Stokes vector evolution.

The paper is organized as follows. Section 2 outlines basic
elements of QIA according to [6–8]. Section 3 approves properties
of weak inhomogeneity and weak anisotropy of thermonuclear plasma
in submillimeter range of wavelengths and specifies QIA equations for
plasma medium. Section 4 develops angular variables technique for two
sets of angular variables — “azimuth-ellipticity” and “amplitude ratio-
phase difference” and analyzes advantages and shortcomings of AVT as
compared with Stokes vector formalism [9–11]. Section 5 summarizes
the main results.

2. BASIC EQUATIONS OF QIA

Traditional geometrical optics method provides approximate diffrac-
tionless solution of Maxwell equations in weakly inhomogeneous media.
Assuming harmonic dependence exp (−iωt), considering nonmagnetic
media with B = H and excluding magnetic field we reduce Maxwell
equations to the form

∇×∇× E− k2D = 0, Di = εikEk, k = ω/c. (1)
When electrical intensity E is determined from Equation (1), magnetic
field H can be found by relation H = − i

ω∇× E. Weak inhomogeneity
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implies that the wavelength λ = 2π/k is short as compared with
characteristic length L of medium parameters changeability, so that
we are able to involve geometrical small parameter

µGO =
λ̄

L
=

1
kL

λ̄ ≡ 1/k (2)

Basic equations of geometrical optics approximation can be
obtained by two methods. Rytov approach [5] deals with expansion
of the ware amplitude in powers µm

GO of dimensionless small
parameter (2), whereas Debye procedure operates with series in inverse
powers of dimensional parameter wave number k

E =
(
A0 +

1
ik

A1 +
1

(ik)2
A2

)
exp (ikΨ) (3)

here kΨ is a phase, and Ψ is an eiconal of the wave field.
Quasi-isotropic approximation (QIA) of geometrical optics

method deals with wave propagation in weakly anisotropic media,
whose dielectric tensor εik consists of large isotropic part ε0δik and
small anisotropy tensor

νik = εik − ε0δik (4)

Thus, QIA involves the second — anisotropic — small parameter

µA =
1
ε0

max |νik| ¿ 1 (5)

Keeping Debye procedure, we should artificially ascribe to small
terms νik the first order in inverse wave number. Assuming

νik =
Nik

k
, (6)

substituting asymptotic expansion (3) into Maxwell Equation (1) and
equaling coefficients of powers km, m = 2, 1, 0, −1, . . . to zero, we
arrive to a system of equations for vector amplitudes A0,A1,A2, . . ..

The terms of the second order in k lead to a system of linear
homogeneous equations for components A0β of the vector A0:

qαβA0β = 0 (7)

where
qαβ =

(
p2 − ε0

)
δαβ − pαpβ (8)

and p = ∇Ψ.
System of Equation (7) admits nontrivial solution

det ‖qαβ‖ =
(
p2 − ε0

)2
ε0 = 0 (9)
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what leads to the eiconal equation:

p2 − ε0 ≡ (∇Ψ)2 − ε0 = 0 (10)

Eiconal Equation (10) can be solved by the method of
characteristics. In a given case characteristic functions p (τ) and r (τ)
satisfy the equations [5]:

dr
dτ

= p,
dp
dτ

=
1
2
∇ε0 (11)

which are equation for ray trajectories r (τ) and for momentum p =
∇Ψ. Here parameter τ along the ray is connected with the ray arc
length σ by the relation dτ = dσ

/√
ε0. Thus, the rays in a weakly

isotropic medium coincide with the rays in the background isotropic
medium.

When eiconal Equation (10) is satisfied, matrix qαβ in
Equation (7) degenerates into matrix ‖pαpβ‖, and Equation (7) takes
a form

p (pA0) = 0 (12)

It follows from (12) that field vector A0 is orthogonal to the ray tangent
p = dr/dτ , so that in the zero approximation we deal with transverse
electromagnetic wave. In this case vector A0 can be presented as
superposition

A0 = Φ1f1 + Φ2f2 (13)

where vectors f1,2 are orthogonal to the ray (f1,2l) = 0, and to each
other: (f1f2) = 0. Here l = p

/√
ε0 is a unit vector, tangent to the ray.

The simplest choice for vectors f1,2 is normal, n, and binormal b,
to the ray, so that

A0 = Φnn + Φbb (14)

Corresponding leading term H0 in the series H = (H0 + 1
ikH1+

. . .) exp(ikΨ) for magnetic field takes the form:

H0 = (p×A0) exp (ikΨ) =
√

ε0 (Φnb− Φbn) (15)

Scalar amplitudes Φn,b, can be determined, using consistency
condition for the first order equations

p2A1−p (pA1)−ε0A1 = −k2ν̂A0−∇×(p×A0)− (p×∇×A0) ≡ Z
(16)

Thus, the components of the first order vector A1 obeys to a
system of linear inhomogeneous equations with zero determinant. This
system can be solved, when consistency conditions are fulfilled: right
hand vector Z in Equation (15) should be orthogonal to eigenvectors of
transposed homogeneous equations. In a given case these eigenvectors
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coincide with vectors of normal and binormal, so that consistency
conditions take the form

Z · n = 0, Z · b = 0 (17)

Equations (15) can be presented in the explicit form:
{

2l
√

ε0∇Φn+Φnl∇√ε0+Φn
√

ε0∇l+2κ
√

ε0Φb−ik(νnnΦn+νnbΦb)=0
2l
√

ε0∇Φb+Φbl∇√ε0+Φb
√

ε0∇l−2κ
√

ε0Φn−ik0(νbnΦn+νbbΦb)=0
(18)

Here 2κ = n∇ × n + b∇ × b is a torsion, which determines rate of
vectors n and b rotation around the ray, and

νnn = nν̂n, νnb = nν̂b
νbn = bν̂n, νbb = bν̂b

(19)

It follows from Equations (17) and (18) that squared modulus

|A0|2 = |Φn|2 + |Φb|2 (20)

of the amplitude (14) satisfies energy flux conservation law

∇
(
p |A0|2

)
= 0 (21)

It is convenient to present zero order amplitude in the form

A0 = |A0|Γ ≡ |A0| (Γnn + Γbb) (22)

where Γ is a unit vector: |Γ| = 1.
According to Equations (18) and (21), components Γn and Γb of

this vector obey the equations:



dΓn

dσ
=

ik

2
√

ε0
(νnnΓn + νnbΓb)− κΓb

dΓb

dσ
=

ik

2
√

ε0
(νbnΓn + νbbΓb) + κΓn

(23)

This system can be reduced to a single equation of Ricatti type
for complex polarization angle (CPA) θ = θ′ + iθ”, defined as

tan θ =
Γb

Γn
(24)

It follows from Equation (23), that equation for CPA has a form
dθ

dσ
=κ+

ik

4
√

ε0
[(νbn−νnb)+(νbn+νbn) cos 2θ−(νnn−νbb) sin 2θ] (25)

As shown in [12], the real part of CPA, Reθ = θ′ coincides with
the azimuthal angle ψ polarization ellipse (Fig. 1)

Reθ = θ′ = ψ (26)
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Figure 1. Angular parameters of polarization ellipse: (a) azimuthal
angle ψ and ellipticity angle χ; (b) amplitude ratio α and phase
difference δ.

whereas hyperbolic tangent of the imaginary part θ” = Imθ equals to
tangent of ellipticity angle χ:

tanh (Imθ) = tanχ (27)

We use these relation for derivation of differential equation in Section 4.
In a limit case of isotropic medium, when all the terms νik tend

to zero, we arrive to the Rytov law [5, 7],
dθ

dσ
= κ (28)

Therefore Equation (25) can be considered as Rytov law generalization
for weakly anisotropic media.

Equations (21) and (23) and (25) are basic equations of
QIA: Equation (21) describes energy evolution along the ray,
whereas Equation (23) and (25) determines polarization properties of
electromagnetic wave.

3. QIA EQUATION FOR ELECTROMAGNETIC WAVES
IN PLASMA

Polarimetry systems in modern plasma devices — tokamaks and
stellarators, deal with electromagnetic waves of submillimeter (for
infrared) range of wavelengths: λ = 0.01 ÷ 0.2mm (corresponding to
frequencies 1.5 ÷ 30THz). For instance, the largest working tokamak
JET (Joint European Tor, Calhan/Oxford, UK) uses wavelengths
λ1 = 195µm (f1 = 1.54 THz) and λ2 = 119µm (f2 = 2.52THz). Even
shorter wavelengths λ ≈ 50µm and λ ≈ 10 µm are envisaged for
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Project ITER, (International Thermonuclear Experimental Reactor),
which is realized now in Cadarache, France.

Electron density in the future tokamak ITER is anticipated to be
as large as Ne = 1014 cm−3. Plasma frequency

ωpl =
(

4πe2Ne

m

)1/2

(29)

for such a density will be about 0.56THz, (here e and m are respectfully
electron charge and mass). In these conditions standard plasma
parameter

X =
(ωpl

ω

)2
(30)

will be small enough. For instance, for frequency f = 3THz we have

X ≈ 0.001 (31)

The other important plasma parameter

Y =
ωce

ω
=

eB0

mcω
(32)

which characterizes the ratio of electron cyclotron frequency ωce =
eB0/mc to working frequency ω, also happens to be small even for
extremely high static magnetic field B0 ≈ 5T. For instance, at
f = 3 THz

Y ≈ 0.05 (33)

We shall see below that smallness of parameters X and Y in
submillimeter range of wavelengths warrants the plasma to be weakly
anisotropic medium. We also can ascertain that in submillimeter range
tokamak plasma belongs to a class of weakly inhomogeneous media and
geometric optics approximations can be used.

Indeed, in modern tokamaks, where the plasma is the size of
few meters, the shortest scale of plasma inhomogeneity is the lower
turbulent scale Lmin ≈ 0.5 cm [4]. It means that outmost value of
geometrical small parameter µGO = 1/kL is about

maxµGO =
1

kLmin
=

λ

2πLmin
≈ 0.03 ¿ 1 (34)

Thus, quasi-isotropic approximation of the geometrical optics method
has all the prerequisites to serve as theoretical basis of plasma
polarimetry in tokamaks.

Let us write down QIA Equations (23) and (25) in cold plasma
approximation. First of all, isotropic component of dielectric tensor
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equals ε0 = 1 − X. In the frame of this model the components
νnn, νnb, νbn and νbb of anisotropy tensor are of the form




νnn = − XY 2

1− Y 2

(
sin2 α|| sin2 α⊥ + cos2 α||

)

νnb = ν∗bn =
XY

1− Y 2

(
i cosα|| + Y sin2 α|| sinα⊥ cosα⊥

)

νbb = − XY 2

1− Y 2

(
sin2 α|| cos2 α⊥ + cos2 α||

)
(35)

Expression (34) is presented in coordinate system (n,b, l) (natural
trihedral), where unit vector l points out the direction of the ray. Static
magnetic vector B0 is supposed to form angle α|| with the ray direction,
whereas transverse magnetic component B0⊥ = B0 − l (lB0) forms
angle α⊥ with normal n (Fig. 2).

In fact, angle α⊥ is an angle between the “ray plane” (n, l), the
plane tangent to the ray and containing normal n, and the “magnetic
plane”, the plane containing vector l and magnetic vector B0.

Substituting anisotropy tensor in Equation (23), we obtain



dΓn

dσ
= − i

2
(2Ω0 − Ω⊥ − Ω1) Γn +

i

2
(Ω2 + iΩ3) Γb − κΓb

dΓb

dσ
=

i

2
(Ω2 − iΩ3) Γn − i

2
(2Ω0 − Ω⊥ + Ω1) Γb + κΓn

(36)

Here Ω1,2,3 are the components of vector Ω

Ω =

( Ω1

Ω2

Ω3

)
=

k

2
√

1−X

X

1− Y 2




Y 2 sin2 α|| cos 2α⊥
Y 2 sin2 α|| sin 2α⊥

2Y cosα||


 (37)

widely used in plasma polarimetry and Ω⊥ with Ω0 are auxiliary
parameters

Ω⊥ =
√

Ω2
1 + Ω2

2 =
k

2
√

1−X

XY 2

1− Y 2
sin2 α|| = Ω0 sin2 α||. (38)

⊥
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||0B
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⊥0B

b
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Figure 2. Magnetic vector B0 in a coordinate system (n,b, l).
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Parameters Ω1 and Ω2 characterize Cotton-Mouton effect, and Ω3

corresponds to Faraday phenomenon. It is worth noticing that
torsion κcould be entered in QIA Equation (36) jointly with Faraday
parameter Ω3, so that sum κ + Ω3 serves as effective parameter of
vector E rotation around the ray. We shall denote this sum as

Ωeff
3 = Ω3 + κ (39)

Using (39), we rewrite Equation (36) as




dΓn

dσ
= − i

2
(2Ω0 − Ω⊥ − Ω1) Γn +

i

2

(
Ω2 + iΩeff

3

)
Γb

dΓb

dσ
=

i

2

(
Ω2 − iΩeff

3

)
Γn − i

2
(2Ω0 − Ω⊥ + Ω1) Γb

(40)

Substituting Equations (35) and (39) in Equation (25), we arrive
to the following equation for complex polarization angle θ = θ′ + iθ”:

dθ

dσ
=

1
2
Ωeff

3 − i

2
(Ω1 sin 2θ − Ω2 cos 2θ) (41)

As it was shown in [13, 14], QIA equations allow readily obtaining
equation for Stokes vector evolution. Here we generalize these results
for the case of the ray torsion.

There component Stokes vector s, given in (n,b, l) coordinate
system, we defined as 




s1 = |Γn|2 − |Γb|2
s2 = 2Re (Γ∗n,Γb)
s3 = 2Im (Γ∗n, Γb)

(42)

Differentiating Equation (42) and using derivatives from Equa-
tion (36), we readily arrive to generalized equation for Stokes vector
evolution:

ds
dσ

= Ωeff × s (43)

Here modified vector Ωeff differs from standard vector Ω =
(Ω1, Ω2, Ω3) by changing Ω3 in effective value (39): Ωeff =
(Ω1, Ω2, Ω

eff
3 ).

It is worth to emphasis principal distinction of presented here
derivation of Equation (43) for Stokes vector evolution from derivation
in [9–11] in frame of Stokes vector formalism (SVF). Equation (43) is
derived here in a consequent way on the basis of expansion of the wave
field into asymptotic series in frame of quasi-isotropic approximation
of geometrical optics method. This derivation takes into account both
curvature and torsion of the ray. Stokes vector formalism completely
omits curvilinear rays, dealing only with plane layered plasma, which
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does not admit side refraction as well as torsion of the rays. Besides
SVF tries to create impression that equation for Stokes vector evolution
is valid even in strongly anisotropic plasma, where intensity vector E
may be have significant longitudinal component. This does not allow
introducing Stokes vector, defined only for transverse wave.

Presence of torsion κ in QIA equations is very important from
general point of view, because the terms with κ provide smooth
transition to isotropic medium. In practice the role of torsion depends
on the ray position relative inhomogeneous plasma. Influence of torsion
is not significant, when

κ ¿ Ω3 ≈ 2π

λ
XY, (44)

or when geometrical small parameter µGO ∼ λ/a does not exceed
anisotropic small parameter µA ∼ XY :

µGO ∼ λ

a
< µA ∼ XY (45)

This condition should be tested every time, when the ray is not
perpendicular to magnetic lines of poloidal magnetic field.

4. ANGULAR VARIABLES TECHNIQUE (AVT)

Separating the real and imaginary parts of Equation (41) for CPA and
using relations (θ′ = ψ) and (tanh θ′′ = tanχ) we arrive to the following
equations for angular parameters of polarization ellipse:





dψ

dσ
=

1
2
Ωeff

3 − 1
2
(Ω1 cos 2ψ + Ω2 sin 2ψ) tan 2χ

dχ

dσ
=

1
2
(Ω1 sin 2ψ − Ω2 cos 2ψ)

(46)

Similar equations can be obtained also for dual set of angular
variables: “amplitude ratio angle” α (tangent of which is defined as the
ratio of polarization sizes in n and b directions: tanα = |Γb|/|Γn| and
phase difference δ between oscillations in n and b directions. According
to recent paper [15], angular parameters α and δ satisfy the system of
equations





dα

dσ
=

1
2

(
−Ω2 sin δ + Ωeff

3 cos δ
)

dδ

dσ
= Ω1 −

(
Ω2 cos δ + Ωeff

3 sin δ
)

cot 2α

(47)

Equations (46) and (47) from a basis for angular variables technique
(AVT). The advantage of AVT against Stokes vector formalism is that
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AVT deals with a system of two coupled equations, where SVF operates
with a system of three differential equations. The other advantage of
AVT is its ability to obtain analytical solutions in the case strong
Faraday effect, when Ω3 À Ω⊥ [16] or strong Cotton-Mouton effect
ω⊥ ¿ Ω3 [17]. AVT has also already demonstrated its efficiency in a
problem of plasma model fitting to experimental data [18].

5. CONCLUSIONS

The basic elements of quasi-isotropic approximation QIA of geometri-
cal optics method are presented, QIA deals with electromagnetic waves
in weakly anisotropic and weakly inhomogeneous media. It is shown
that in the zero order of quasi-isotropic approximation the wave field
represents a transverse wave, propagating along isotropic rays, whereas
polarization structure of transverse wave is described by equation for
complex polarization angle. We have shown also that dense plasma
in modern fusion reactors disposes properties of weakly anisotropic
and weakly inhomogeneous medium, what allows using QIA as the-
oretical basis for dense plasma polarimetry in submillimeter range of
wavelengths.

One of important results is derivation of equation for Stokes vector
evolution along curvilinear ray, experienced torsion.

Author’ important new result is the derivation of evolution
equations directly for angular parameters of polarization ellipse. These
equations form new instrument in polarization analysis — angular
variables technique.
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