Vol. 127
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-04-27
The Real-Valued Time-Domain TE-Modes in Lossy Waveguides
By
Progress In Electromagnetics Research, Vol. 127, 405-426, 2012
Abstract
The time-domain studies of the modal fields in a lossy waveguide are executed. The waveguide has a perfectly conducting surface. Its cross section domain is bounded by a singly-connected contour of rather arbitrary but enough smooth form. Possible waveguide losses are modeled by a conductive medium which fills the waveguide volume. Standard formulation of the boundary-value problem for the system of Maxwell's equations with time derivative is given and rearranged to the transverse-longitudinal decompositions. Hilbert space of the real-valued functions of coordinates and time is chosen as a space of solutions. Complete set of the TE-time-domain modal waves is established and studied in detail. A continuity equation for the conserved energetic quantities for the time-domain modal waves propagating in the lossy waveguide is established. Instant velocity of transportation of the modal flux energy is found out as a function of time for any waveguide cross section. Fundamental solution to the problem is obtained in accordance with the causality principle. Exact explicit solutions are obtained and illustrated by graphical examples.
Citation
Oleg Tretyakov, and Mehmet Kaya, "The Real-Valued Time-Domain TE-Modes in Lossy Waveguides," Progress In Electromagnetics Research, Vol. 127, 405-426, 2012.
doi:10.2528/PIER12031402
References

1. Lord Rayleigh "On the passage of electric waves through tubes,or the vibrations of dielectric cylinders," Phil. Mag, Vol. 43, 125-132, 1897.

2. Collin, R. E., Field Theory of Guided Waves, McGraw-Hill, 1960.

3. Kurokawa, K., An Introduction to the Theory of Microwave Circuits, Academic Press, New York, 1969.

4. Chew, W. C., Waves and Fields in Inhomogeneous Media, Van Nostrand Reinhold, New York, 1990, Reprinted by IEEE Press, 1995.

5. Marks, R. B. and D. F. Williams, "A general waveguide circuit theory," J. Res. Nat. Inst. Stand. Technol., Vol. 97, 533-562, Sep.-Oct.1992.

6. Kragh, H., "Equation with the many fathers. The Klein-Gordon equation in 1926," Am. J. Phys., Vol. 52, No. 11, 1024-1033, Nov.1984.
doi:10.1119/1.13782

7. Schelkunoff, S. A., "Conversion of Maxwell's equations into generalized telegraphist's equations," BSTJ, Vol. 34, 995-1043, 1955.

8. Polyanin, A. D., Handbook of Linear Partial Differential Equations for Engineers and Scientists, Chapman & Hall/CRC Press, Boca Raton, FL, 2002.

9. Gabriel, G. J., "Theory of electromagnetic transmission structures, Part I: Relativistic foundation and network formalism," Proc. IEEE, Vol. 68, No. 3, 354-366, Mar.1980.
doi:10.1109/PROC.1980.11646

10. Borisov, V. V., Transient Electromagnetic Waves, Leningrad University Press, 1987(in Russian).

11. Tretyakov, O. A., "Evolutionary waveguide equations," Sov. J.Comm. Tech. Electron. (English Translation of Elektrosvyaz and Radiotekhnika), Vol. 35, No. 2, 7-17, 1990.

12. Tretyakov, O. A., "Essentials of nonstationary and nonlinear electromagnetic field theory," Analytical and Numerical Methods in Electromagnetic Wave Theory, M. Hashimoto, M. Idemen,O. A. Tretyakov, Eds., Chapter 3, Science House Co. Ltd., Tokyo,1993.

13. Tretyakov, O. A., "Evolutionary equations for the theory of waveguides," IEEE AP-S Int. Symp. Dig., 2465-2471, Seattle,Jun.1994.

14. Kristensson, G., "Transient electromagnetic wave propagation in waveguides," Journal of Electromagnetic Waves and Applications, Vol. 9, No. 5-6, 645-671, 1995.
doi:10.1163/156939395X00866

15. Slivinski, A. and E. Heyman, "Time-domain near-field analysis of short-pulse antennas |--Part I: Spherical wave (multipole) expansion," IEEE Trans. Antenn. Propag., Vol. 47, 271-279, Feb.1999.
doi:10.1109/8.761066

16. Aksoy, S. and O. A. Tretyakov, "Evolution equations for analytical study of digital signals in waveguides," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 12, 1665-1682, 2003.
doi:10.1163/156939303322760209

17. Geyi, W., "A time-domain theory of waveguides," Progress In Electromagnetics Research, Vol. 59, 267-297, 2006.

18. Tretyakov, O. A. and O. Akgun, "Derivation of Klein-Gordon equation from Maxwell's equations and study of relativistic time-domain waveguide modes," Progress In Electromagnetics Research, Vol. 105, 171-191, 2010.
doi:10.2528/PIER10042702

19. Tretyakov, O. A. and O. Akgun, "Relativistic invariance of the time-domain waveguide modes,", URSI GA, Aug.2011, DOI:10.1109/URSIGASS.2011.6050487..

20., http://www.springer.com/birkhauser/mathematics/journal/28.

21. Umov, N. A., "Ein theorem Äuber die wechselwirkungen in endlichen entfernungen," Zeitschrift fÄur Mathematik und Physik, Vol. XIX, 97,1874.

22. Poynting, J. H., "On the transfer of energy in the electromagnetic field," Philos. Trans. of the Royal Society of London, Vol. 175, 343-361, 1884.
doi:10.1098/rstl.1884.0016

23. Tretyakov, O. A. and F. Erden, "Temporal cavity oscillations caused by a wide-band waveform," Progress In Electromagnetics Research B, Vol. 6, 183-204, 2008.
doi:10.2528/PIERB08031222