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Abstract—The time-domain studies of the modal fields in a lossy
waveguide are executed. The waveguide has a perfectly conducting
surface. Its cross section domain is bounded by a singly-connected
contour of rather arbitrary but enough smooth form. Possible
waveguide losses are modeled by a conductive medium which fills
the waveguide volume. Standard formulation of the boundary-value
problem for the system of Maxwell’s equations with time derivative
is given and rearranged to the transverse-longitudinal decompositions.
Hilbert space of the real-valued functions of coordinates and time is
chosen as a space of solutions. Complete set of the TE-time-domain
modal waves is established and studied in detail. A continuity equation
for the conserved energetic quantities for the time-domain modal waves
propagating in the lossy waveguide is established. Instant velocity of
transportation of the modal flux energy is found out as a function of
time for any waveguide cross section. Fundamental solution to the
problem is obtained in accordance with the causality principle. Exact
explicit solutions are obtained and illustrated by graphical examples.

1. INTRODUCTION

Classical waveguide theory started from the pioneering Lord Rayleigh’s
article [1]. Since then, during more than a century, almost all
theoretical studies were based on the time-harmonic field concept
which was put forward in [1]. A lot of useful results were obtained
within the framework of the time-harmonic field concept and were
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successfully applied to numerous problems in physics and technology,
see [2–5] among many other outstanding publications.

In the time-domain studies, the Maxwell’s equations with time
derivative were altered (in one way or another) to the Klein-Gordon
equation (KGE) well known earlier in quantum physics [6]. Probably,
Schelkunoff was the first who altered the time-domain waveguide
problem to solving a generalized telegraphist’s equation which is
reducible, eventually, to the KGE as well [7, 8]. To the best of our
knowledge, Gabriel was the first who derived the KGE directly from
the Maxwell’s equations with time derivative in [9]. More or less regular
studies of the time-domain waveguide problems were started at the end
of 80s, see [10–19]. One can find many other essential results in the
publications referenced there.

In the time-harmonic theory and in the time-domain studies,
as well, appropriate class of complex-valued quadratically integrable
functions is specified as a space of solutions. Definition of that space
is usually made by introducing an inner product of the field vectors
with applying complex conjugation to one of the multipliers. Hence,
the energy flux and the stored energy densities can be obtained with
automatic averaging these quantities over a period of variations of the
fields in time. Similar problems arise in any time-domain approach if
the space of solutions belongs to the complex-valued functions.

The goal of this article is solving the time-domain waveguide
problem in a class of the real-valued functions. Therefore, this
approach enables to study various dynamic processes, which are
pertinent to the electromagnetic fields and also to their energetic
characteristics. The article is composed as follows.

In Section 2, standard formulation of the time-domain problem
is presented. In Section 3, the system of Maxwell’s equations
with time derivative is transformed by the transverse-longitudinal
decompositions to a form convenient for analysis just in the time
domain. In Section 4, a complete set of the TE-time-domain modes
is derived. Every modal field component consists of two factors. One
factor is a vector function of transverse waveguide coordinates, r. The
other one is a scalar function dependent on axial coordinate, z, and
time, t. The vector functions of r-variables, taken jointly, originate
a modal basis in the waveguide cross section. The basis elements are
derived with needed physical dimensions, namely: (volt per meter) and
(ampere per meter) for the electric and magnetic fields, respectively.
Meanwhile, the scalar factors dependent on (z, t) are dimensionless.
They have the physical sense of the modal amplitudes. Present theory
is intended for real-valued solutions. In Section 5, conservation of
energy law is considered. A continuity equation is derived for the
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conserved energetic field quantities averaged over the waveguide cross
section. Instant velocity of transportation of the modal field energy as
a function of (z, t) is obtained. In Section 6, evolutionary equations
for the modal amplitudes are obtained. In Section 7, verification
of present theory is performed via applying that to analysis of the
time-harmonic modes in the class of real-valued functions. The time-
harmonic mode properties, which were established by the classical
theory, are corroborated by our theory. However, the real-valued
solutions disclose also some new properties, which were inaccessible for
the classical approach. In particular, it turns out that propagation of
time-harmonic modal fields, as such, is accompanied with a dynamic
energetic wave process. In Section 8, fundamental solution for the
time-domain modal waveguide wave is obtained in compliance with
the causality principle. In Section 9, possible extension of the theory
and applications of the results are discussed.

2. FORMULATION OF THE PROBLEM

2.1. Description of the Waveguide and Notations

The waveguide under study has a surface with the properties of the
perfect electric conductor. The waveguide cross-section domain, S, is
bounded by a closed singly-connected contour, L. The shape and size
of the contour, L, are invariable along the waveguide axis, Oz. The
shape of L may be rather arbitrary provided that none of the possible
its inner angles (i.e., measured within S) exceed π. In particular,
the standard waveguides with rectangular cross section satisfy this
requirement. Introduce over the contour a right-handed triplet {z, l,n}
of the mutually orthogonal unit vectors supposing that z× l = n. The
vector z is oriented along the axis, Oz, the vector l is tangential to the
contour, L, and n is the outer normal to the domain S. Denote a point
of observation within the waveguide by a three-component vector R
and an observation time by t.

The waveguide is filled by a lossy medium. For the sake of
simplicity, suppose that the relative permittivity and permeability, ε
and µ, of the medium are equal to 1 both, but its linear conductivity,
σ, may be distinct from zero. The case σ = 0 corresponds to the hollow
waveguide studied in [18]. The current density, J , which is induced by
the waveguide field, E , in the conducting medium is specified by the
Ohm’s law as J = σ E .
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2.2. The Set of Equations

We have to solve the curl Maxwell’s equations
∇×E (R, t) = −µ0∂tH (R, t) , ∇×H (R, t) = ε0∂tE (R, t) + σE (R, t)

(1)
where the calligraphic letters represent the time-dependent field
vectors, E and H, which specify the electric and magnetic-field
strengths. Vector Equation (1) should be solved simultaneously with
the divergent equations, i.e.,

ε0∇ · E (R, t) = ρ (R, t) and ∇ · H (R, t) = 0 (2)
where ρ is the electric charge density induced by the field E in the
medium. Making use of the continuity equation, that is,

∇ · J (R · t) = −∂tρ (R · t) , (3)
one can find a relation between ρ and E as

ρ (R · t) = −σ

∫ t

0
∇ · E (

R, t′
)

dt′. (4)

The field vectors should satisfy the boundary conditions as
n · H|L = 0, l · E|L = 0, and z · E|L = 0 (5)

over the perfectly conducting waveguide surface.
The Maxwell’s Equation (1) belong to the hyperbolic type of

the partial differential equations (PDE). Consequently, they can be
supplemented with the initial conditions given at a fixed instant (say,
t = 0) and/or with an additional boundary condition given at a fixed
axial coordinate (say, at z = z0) in accordance with physical content
of a problem under study. Besides, the problem should be solved in
compliance with the causality principle.

The physical postulate that the electromagnetic field energy is
always finite requires to find out a desirable solution to problem (1)–
(5) in a class of integrable vector functions of coordinates and time.

2.3. Remark

The free-space permeability and permittivity constants, µ0 and ε0 in
(1) , carry SI units, respectively, as 4π× 10−7 Hm−1 (henry per meter)
and 8.854187817×10−12 Fm−1 (farad per meter). The constant σ in (1)
is linear conductivity measurable in Sm−1 (siemens per meter). The
electric current and charge densities, J and ρ in (3) , carry SI units,
respectively, as Am−2 (ampere per meter2) and Cm−3 (coulomb per
meter3). The electromagnetic field vector quantities E and H sought
for are measurable in Vm−1 (volt per meter) and Am−1 (ampere per
meter), respectively.
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3. TRANSVERSE-LONGITUDINAL DECOMPOSITIONS

The position vector, R, and the operator nabla, ∇, are presentable as

R = r + z z and ∇ = ∇⊥ + z ∂z (6)

where r and ∇⊥ are the projections of R and ∇, respectively, on the
cross-section domain, S. The field vectors, E and H, are presentable
analogously as

E(R, t)=E (R, t)+zEz (R, t) andH(R, t)=H (R, t)+zHz(R, t) (7)

where the two-component vectors, E and H, are the projections of
the vectors E and H on the domain S, respectively. Notice that the
argument (R, t) of the three-component vector functions, E and H,
and their projections in (7) is equivalent to the argument (r, z, t) .

Projecting of the Curl Equations (1): Denote for a while
the field vectors, E and H each, as a three-component vector function,
F = F+ zFz, dependent on (r, z, t) . Formally, the curl vector, ∇×F ,
is

[∇×F ]=(∇⊥+z ∂z)×(F+zFz)=[∇⊥ × F] + [∇⊥×zFz] + ∂z [z× F]
(8)

where the transverse operator nabla, ∇⊥, acts only on the transverse
variables, r, in the argument (r, z, t) of the functions F and Fz

both. Simple manipulations with projecting the vector (8) yield
the transverse and longitudinal parts, [∇×F ]⊥ and [∇×F ]z ,
respectively, of the curl vector as

(∇×F)⊥ = [∇⊥ × zFz]+∂z [z× F] and (∇×F)z = ∇⊥·[F× z] (9)

Applying formulas (9) to the first equation from (1) results in one
two-component vector equation, (10a), and another scalar one, (10b)
namely:

{
[∇⊥Ez × z ] + ∂z [z×E] = −µ0∂tH (10a)

∇⊥ · [z×E] = µ0∂tHz (10b)

where the identity [∇⊥ × zEz] = [∇⊥Ez × z] was used in passing. The
same manipulations with the second equation from (1) yield a similar
pair as

{
[∇⊥Hz × z] + ∂z [z×H] = ε0∂tE + σ E (11a)

∇⊥ · [H× z] = ε0∂tEz + σ Ez (11b)

Notice that the set Equations (10)–(11) is equivalent to Equation (1).
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3.1. The TE- and TM-modal Field Problems

Compose two problems from the Maxwell’s Equations (10)–(11), (2)–
(4) and the boundary conditions (5) in the following way. All
equations, in which the Hz-component participates, we refer to the
set (12). In the position (12a) the vector equation (11a) is placed.
Before placing, we multiplied that vectorially from the left-hand side
by z×. In the position (12b), the scalar equation (10b) stands. In the
position (12c), the second divergent equation from (2) stands in the
appropriate form. The positions (12d) and (12e) are occupied by the
boundary conditions taken from (5).




∇⊥Hz = ∂zH + ε0∂t [z×E] + σ [z×E] (12a)
µ0∂tHz = ∇⊥ · [z×E] (12b)
∂zHz = −∇⊥ ·H (12c)
n ·H|L = 0 (12d)
l ·E|L = 0 (12e)

We take now the vector Equation (10a), multiply that by z× and
place the result in the position (13a). In the position (13b), herein, the
Equation (11b) stands. In the position (13c), an evident combination
of the first divergent equation from (2) and the definition (4) for ρ is
placed. In the lines (12d), (12e) and (12f), the boundary conditions
(5) are repeated.




∇⊥Ez = ∂zE + µ0∂t [H× z] (13a)
ε0∂tEz + σ Ez = ∇⊥ · [H× z] (13b)

ε0∂zEz+σ

∫ t

0
∂zEzdt′ = −ε0∇⊥ ·E +

∫ t

0
∇⊥ ·E dt′ (13c)

Ez|L = 0 (13d)
l ·E|L = 0 (13e)
n ·H|L = 0 (13f)

Notice that the problems (12) and (13), taken jointly, are
completely equivalent to the Equations (1)–(5) from the original
formulation of the problem.

Similar transverse-longitudinal decompositions were used previ-
ously in study of the time-harmonic fields with dependence on time
given in advance as exp(iωt); take for instance [5]. One can consider
the sets (12) and (13) as an extension of those decompositions to a
form available for the time-domain analysis.

In this article, we solve the problem (12) for a set of the modal
fields like
E = E′ (r, z, t) ≡ E ′, and H = H′ (r, z, t) + zHz (r, z, t) ≡ H′ (14)
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each of which has Ez component equal to zero. In the waveguide
theory, it is adopted to name the fields like (14) as transverse (with
respect to Oz-axis) electric ones, or the TE-fields, shortly†.

Proceed to solving the problem (12) in the class of real-valued
quadratically integrable vector functions of coordinate and time. One
can receive evidence in what follows that the real-valued solutions are
much simpler for physical analysis, especially in respect of the energetic
field properties.

4. COMPLETE SET OF THE TE-TIME-DOMAIN
MODES

4.1. Derivation of a Vectorial Modal Basis

The boundary condition (d) from (12) suggests taking the transverse
field component composed as

H′ (r, z, t) = I ′ (z, t)
[
µ
− 1

2
0 ∇⊥Ψ(r)

]
(16)

where the potential, Ψ, and the amplitude factor, I ′, are unknown yet

and should be found out further on. The physical constant, µ
− 1

2
0 ,

was inserted in (16) heuristically in order to provide the field H′
with the required physical dimension (ampere per meter) hereinafter.
Substitution of the field (16) to that boundary condition yields

n · ∇⊥Ψ(r) |L ≡ ∂nΨ(r) |L = 0. (17)

If the boundary condition n · H′|L = 0 holds, the boundary
condition (12e) should hold automatically. To this aim, the field E′
can be taken as

E′ (r, z, t) = V ′ (z, t)
[
ε
− 1

2
0 ∇⊥Ψ(r)× z

]
(18)

where V ′ is one more amplitude factor which should be found out

hereinafter. The factor ε
− 1

2
0 , which is introduced in (18) heuristically,

will provide the field E′ with required physical dimension (volt per
meter) in the end. Notice that identity [∇⊥Ψ (r) × z] · l = [z× l] ·
∇⊥Ψ(r) = n · ∇⊥Ψ(r) holds. This results in the boundary condition
(17) again.
† Problem (13) yields the set of TM-time-domain modal fields as

H = H′′ (r, z, t) ≡ H′′, and E = E′′ (r, z, t) + zEz (r, z, t) ≡ E ′′. (15)

This problem will be solved and analyzed elsewhere because of lack of space herein.
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Introduce into consideration Hz-component in the form of

Hz (r, z, t) = A (z, t)
[
µ
− 1

2
0 Ψ (r)

]
(19)

where A is the last amplitude factor unknown yet. Substitution of
the field components (16), (18) (19) to the Equations (12b) and (12c)
yields

∂ctA (z, t) [Ψ (r)] = −V ′ (z, t)
[−∇2

⊥Ψ(r)
]

∂zA (z, t) [Ψ (r)] = I ′ (z, t)
[−∇2

⊥Ψ(r)
] (20)

where ∂ct =
√

ε0µ0∂t, identity [z×[∇⊥Ψ× z]] = ∇⊥Ψ was used in
passing.

The boundary condition (17) itself along with presence of
the factor

[−∇2
⊥Ψ

]
in Equations (20) both induces to take into

consideration the Neumann boundary eigenvalue problem for the
transverse Laplacian, ∇2

⊥, formulated as

∇2
⊥Ψn (r) + ν2

nΨn (r) = 0 and n · ∇⊥Ψn (r) |L = 0 (21)

where ν2
n > 0 are the eigenvalues, n = 1, 2, . . . , and Ψn are the

appropriate eigensolutions. Besides, number ν2
0 = 0 is also eigenvalue

of the operator ∇2
⊥ which has an eigensolution, Ψ0 (r) , distinct from

zero in the general case. We shall take into account this fact at the
end of the TE-field analysis.

The differential equation and the boundary condition in (21) are
homogeneous, i.e., their right-hand sides are equal to zero. Hence, the
solution, Ψn (r) , can be factorized as

Ψn (r) = N ′
nψn (r) (22)

where N ′
n is a normalization constant and ψn (r) is a dimensionless

solution to the same Neumann problem, namely:

∇2
⊥ψn (r) + ν2

nψn (r) = 0 and n · ∇⊥ψn (r) |L = 0. (23)

Keeping in mind physical content of the problem under study,
introduce a normalization condition in a special form as

(N ′
n)2

(
ν2

n/S
) ∫

S |ψn (r)|2 ds = N (24)

where S is the cross-section domain, N is newton (the physical
dimension of force). Evidently, N ′

n , has the same physical dimension
as the product ν−1

n N
1
2 . Notice that the Helmholtz equation in (23)

yields the quantity νn with dimension m−1 (inverse meter) as far as
the Laplacian, ∇2

⊥ , has dimension m−2 in SI units.



Progress In Electromagnetics Research, Vol. 127, 2012 413

The set of eigensolutions {ψn (r)}∞n=0 is orthonormal and complete
in appropriate Hilbert space what follows from Sturm-Liouville
theorems. In other words, this set originates an orthonormal basis
in that space of quadratically integrable functions.

The set of normalized solutions, Ψn (r) , generates the set of TE-
time-domain waveguide modes via choosing the eigenfunctions, Ψn,
as the potential Ψ introduced above. Substitution of Ψn as Ψ and[−∇2

⊥Ψn

]
as ν2

nΨn to (20) yields

V ′
n (z, t) = −∂ct hn (z, t) and I ′n (z, t) = ∂z hn (z, t) (25)

for the eigenvalues ν2
n 6= 0. It is convenient to scale the amplitude

factor, An, as
An (z, t) = ν2

n hn (z, t) (26)
where a new unknown function, hn, is introduced instead of An.
Substitutions of Ψn as Ψ, and ν2

n hn as A, to formulas (16) , (18) ,
(19) result in

E′n (r, z, t) = V ′n (z, t)
[
ε
− 1

2
0 νn∇⊥Ψn (r)× z

]

H′
n (r, z, t) = I ′n (z, t)

[
µ
− 1

2
0 νn∇⊥Ψn (r)

]

Hz n (r, z, t) = hn (z, t)
[
µ
− 1

2
0 ν2

n Ψn (r)
]

(27)

where the modal amplitudes, V ′n and I ′n, are specified via partial
derivatives (25) of the function hn (z, t) scaled by a factor, ν−1

n , what
yields

V ′n (z, t) = −∂νnc t hn (z, t) and I ′n (z, t) = ∂νnz hn (z, t) . (28)

Notice that only one function, hn, remains unknown herein. One
can consider as already known all functions of the transverse
coordinates selected by square brackets in (27). They are specified
by the formula (22), the Neumann problem (23), and normalization
condition (24). The example that follows illustrates how to use this
definition in practice.

Example 1 Consider a standard waveguide with rectangular cross
section specified in the Cartesian coordinates, (x, y) , as 0 ≤ x ≤ a
and 0 ≤ y ≤ b. Separation of the x- and y-variables in the Neumann
problem (23) yields the potential, ψn (r) ≡ ψn (x, y) , as

ψn (x, y) ≡ ψp, q (x, y) = cos (πp x/a) cos (πq y/b) , (29)
which corresponds to the eigenvalue distinct from zero,

ν2
n ≡ ν2

p, q = π2
[
(p/a)2 + (q/b)2

]
, (30)
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where the subscript parameter, n, is a doublet, (p, q) , composed of the
integers, p = 0, 1, 2, . . . and q = 0, 1, 2, . . . , provided that p + q 6= 0.
Condition (24) yields the normalization constant, N ′

n , as

N ′
n = 2 ν−1

n N
1
2 V N ′

p, q = 2 ν−1
p, qN

1
2 . (31)

The subscript parameter, (n) ≡ (p, q) , identifies the modal type.

4.2. Complete Set of the TE-modal Waves

Equation (27) suggests introducing a set of vector functions of variable
r as

E′n (r) = ε
− 1

2
0 N ′

n νn∇⊥ψn (r)× z

H′n (r) = µ
− 1

2
0 N ′

n νn∇⊥ψn (r)

Hz n (r) = z
[
µ
− 1

2
0 N ′

n ν2
n ψn (r)

] (32)

where ν2
n 6= 0, E′n and H′n are the two-component transverse vectors,

Hz n is the one-component vector oriented along Oz-axis. The set of
vectors (32) originates a modal basis in the waveguide cross-section
domain, S.

Remark. We have already provided the basis elements (32) with
required physical dimensions due to successfully chosen normalization
condition (24) ‡. The basis elements H′n and Hz n have dimension
Am−1 (ampere per meter) and the basis element E′n has dimension
Vm−1 (volt per meter).

Thus, the TE-modal fields, E ′n and H′n, can be written as

E ′n (r,z, t) = V ′n (z, t)E′n (r) + z 0
H′n (r,z, t) = I ′n (z, t)H′n (r) + hn (z, t)Hz n (r)

(33)

where the amplitude hn remains unknown yet, only. The other
amplitudes, V ′n and I ′n, are expressed via hn by formulas (28) .
The modal amplitude hn should be found out hereinafter as a
dimensionless quantity. As it follows from Equation (28) , the other
modal amplitudes, V ′n and I ′n, will be dimensionless, as well. Besides,
the eigenvalue ν2

n = 0 from (23) generates one more modal field as

E ′0 (r,z, t) = 0 and H′0 (r,z, t) = zCAm−1 (34)

where C is a constant. That is, the modal field (34) is static magnetic.
Introduce a six-component vector, X ′

n, composed of the field
vectors (33) as X ′

n = col (E ′n,H′n) where col means “column”. Choose

‡ Constant µ
−1/2
0 N1/2 has dimension A (ampere) and ε

−1/2
0 N1/2 has dimension V (volt).
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a Hilbert space as the space of solutions. Remind that the set
{E ′n,H′n}∞n=0 consists of the real-valued vector elements. Specify that
functional space by inner product

〈X ′
n,X ′

m

〉
=

1
S

∫

S

(
ε0E ′n · E ′m + µ0H′n · H′m

)
ds (35)

where X ′
n and X ′

m is a pair of arbitrary real-valued vectors from that
set, the free-space constants, ε0 and µ0, play role of the weighting
coefficients.

If m 6= n, then 〈X ′
n,X ′

m〉 = 0 due to orthogonality of the
eigensolutions to the Neumann problem (23) . Physically, that implies
orthogonality of the modal fields (33) in the space of solutions.
Completeness of the set {X ′

n}∞n=0 follows from the Sturm-Liouville’s
theorems of mathematical physics. If m = n, then product (35) yields
the modal field energy, Wn, stored at an instant t in the cross-section
domain, S, located at a fixed coordinate z.

5. ENERGETIC CHARACTERISTICS OF THE MODAL
WAVES

A linkage between the modal fields (33) and their energetic
characteristics can be established by applying the Poynting’s theorem
to Maxwell’s Equation (1). Supposing application of that theorem in
its integral form later, introduce a control volume, V, bounded by two
consecutive waveguide cross sections located at coordinates z and z+δz
where r ∈ S and r ∈ L. Standard manipulations with the Maxwell’s
equations result in

1
V

∮

Σ

NΣ ·P ′n(r, z, t) dΣ = − 1
V

∫

V

[
∂t

(
ε0E ′2n +µ0H′2n

)
/2+σE ′2n

]
dv (36)

where Σ is the surface surrounding V, NΣ is the outward normal to
Σ, P ′n = E ′n × H′n is the Poynting’s vector, V = Sδz. Notice that
NΣ · P ′n = 0 if r ∈ L due to the boundary conditions (5) . Substitution
of the fields (33) to (36) and integration over the domain S yields

cν2
nN

δz

[
z·P ′n|z+δz−z·P ′n|z

]
= −ν2

nN

δz

∫ z+δz

z

[
∂tW ′

n (z, t)+2%V ′2n (z, t)
]
dz

(37)
where the normalization condition (24) is used and notations are
adopted as

W ′
n (z, t) =

[V ′2n (z, t) + I ′2n (z, t) + h2
n (z, t)

]
/2, % = σ

2

√
µ0/ε0 ≥ 0.

(38)
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In the limiting case, when δz → 0, the quantity z · P ′n|z+δz in (37)
can be approximated by a Taylor series expansion as

z · P ′n|z+δz u z · P ′n|z + δz ∂z

(
z · P ′n|z

)
+

1
2

(δz)2 ∂2
z

(
z · P ′n|z

)
. . . . (39)

Neglecting by the small quantities of order δz2 and higher in (39) yields
1
δz

{
z · P ′n|z+δz−z · P ′n|z

}
u ∂z

(
z · P ′n|z

) ≡ ∂zP ′z n

P ′z n (z, t) = V ′n (z, t) I ′n (z, t)
(40)

where P ′z n is z-component of the Poynting vector of the modal field
(33) averaged over the waveguide cross section, S. Finally, this result
yields a law of conservation for the energetic field characteristics as

∂zP ′z n (z, t) + ∂ctW ′
n (z, t) + 2%V ′2n (z, t) = 0 (41)

where the mean-value theorem was applied for estimation of the
integral in (37) .

Physically, Pz n specifies directional along Oz-axis flux of the
modal field energy density averaged over the cross-section domain,
S. Indeed, the factor [c ν2

nN ] in (37), where c is the light speed,
has physical dimension Wm−2 (watt per meter2). The quantity W ′

n
specifies the modal field energy density stored in the waveguide cross
section and averaged over S. The factor [ν2

nN ] in (37) has physical
dimension Jm−3 (joule per meter3). The last term in (41), %V ′2n , has
physical sense of the work done by the induced electric current, σE ′n,
under action of the electric field, E ′n. That work is converted into a
heat energy.

Mathematically, Equation (41) specifies the local properties of the
modal fields in the space solutions. The quadric characteristics, W ′

n
and P ′z n, as such, specify the global field properties in that space.
Physically, (41) is a continuity equation for the conserved energetic
field quantities.

In the general case, the energy flux vector, U, has been discovered
by Umov as the product of a velocity vector, v, and an energy,
W , see [21]. This definition describes energy flux in liquids, elastic
media, etc.. Besides, that concept is also available for the flux of
electromagnetic energy. Poynting and Heaviside independently co-
invented the electromagnetic energy flux, P, as the cross-product of
the electric and magnetic field strengths, E ×H, see in [22] as

U = v W and P = E ×H . (42)

Let us take U ≡ P as a particular case. Then formula v = P/W
specifies an instant velocity, v, of transportation of the flux of
electromagnetic field energy.
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Apply this formula the modal flux density, P ′z n, averaged over
the domain S, and to the modal field energy density, W ′

n, stored in
the same cross-section domain and averaged analogously. That yields
a value of the instant velocity of transportation of the flux of modal
field energy along the waveguide as

v (z, t) /c = 2V ′n (z, t) I ′n (z, t) /
[V ′2n (z, t) + I ′2n (z, t) + h2

n (z, t)
]

(43)

where c is the speed of light.

6. EVOLUTIONARY EQUATION FOR hn (z, t)

Finally, derive a governing equation for the amplitude hn (z, t) in
(33) . That equation can be obtained by substitution of needed field
components from the set (33) to Equation (12a). Simple manipulations
after result in

∂2
νnc thn + 2βn ∂νnc thn − ∂2

νnzhn + hn = 0 (44)

where c is the light speed, βn = %/νn is a dimensionless lossy
parameter because the quantities % and νn, both, have the same
physical dimension, m−1.

Mathematicians call all differential equations, which involve
partial (or/and ordinary) time derivative, as the evolutionary ones, see
link [20]. Evolution Equation (44) is known under names Klein-Gordon
equation (KGE) [6], telegraph equation, generalized wave equation [8].

Time derivative of the first order can be eliminated from
Equation (44) by applying a substitution for the function hn (z, t)
sought for in the form of

hn (z, t) = e−% cth̃n (z, t) . (45)

This yields governing equation for a new unknown function, h̃n (z, t) ,
as

∂2
νnc th̃n (z, t)− ∂2

νnzh̃n (z, t) +
(
1− β2

n

)
h̃n (z, t) = 0 . (46)

Notice that conductivity, σ, appears as a parameter via βn = %/νn

in the Equations (44) and (46) , but that is absent in the modal basis
(32) .

7. THE REAL-VALUED TIME-HARMONIC TE-MODES

In accordance with the Bohr correspondence principle, the time-
domain theory has to exhibit the time-harmonic solutions as a
particular case. Verify that it is so and demonstrate in passing that
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the time-domain theory is capable of disclose new properties of the
time-harmonic waveguide waves.

Inasmuch the time-harmonic waves freely propagate in waveg-
uides, i.e., −∞ < t < +∞, the initial conditions and the causality prin-
ciple are superfluous in the frequency-domain analysis. Klein-Gordon
Equation (46) has, as well, two linearly independent solutions in ele-
mentary functions as

h̃n (z, t) = an sin (ωt− γnz) + bn cos (ωt− γnz) (47)

where ω is a given frequency parameter, γn is a propagation constant
sought for, an and bn are free numerical parameters. The sin- and
cos-solutions in (47) can be unified if we introduce new notations as

cn =
√

a2
n + b2

n, an/cn = cosϕ, bn/cn = sin ϕ. (48)

Standard combination with the trigonometric functions in (47) results
in

h̃n (z, t) = cn sin (ωt− γnz + ϕ) (49)

where ϕ = sin−1 (bn/cn) = cos−1 (an/cn). Solutions (47) and (49) are
equivalent. One can put the factor cn in (49) as cn = 1 without loss of
generality.

Substitution of (49) to (46) yields the propagation constant, γn,
as

γn = ± 1
c

√
ω2 − (νnc)2 (1− β2

n) (50)

where c is the free-space light speed. In the doublet, (±) , the upper
sign corresponds to the wave propagation lengthway Oz-axis; the lower
one corresponds to the opposite direction. The standard procedure
applied to the phase, ϑ (z, t) = ωt − γnz + ϕ, in (49) results in the
phase velocity, vph, as

vph = ± c
ω√

ω2 − (νnc)2 (1− β2
n)

. (51)

Condition γn = 0 yields an equation for the frequency parameter,
ω. The solutions to this equation generate a set of the cut-off
frequencies, ωn, i.e.,

{
ωn = νnc

√
1− β2

n

}∞
n=1

. (52)

If σ = 0, then βn = 0. Hence, the quantities νnc (denoted as νnc ≡ ω′n
henceforward) are the cut-off frequencies of the TE-modes propagating
in the hollow lossless waveguide. Notice, that the lossy parameter,
0 < βn < 1, downgrades the cut-off frequency levels for the lossy
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waveguides. The quantities νn = ω′n/c have the physical sense of the
cut-off wave numbers for the hollow lossless waveguides. Respectively,
values ωn/c = νn

√
1− β2

n, n = 1, 2, . . . are the cut-off wave numbers
for the lossy waveguides.

Introduce a dimensionless time, τ, and a dimensionless coordinate,
ξ, via scaling the real coordinate, z, and time, t, as follows:

ξ = νnz = 2π z/λ′n and τ = ω′n t = 2π t/T ′n (53)

where λ′n = 2π/νn is the cut-off wavelength of the TE-modes (n =
1, 2, . . .) in the lossless waveguide and T ′n = λ′n/c is the period of
oscillations corresponding to the cut-off frequency, ω′n. In terms of
these notations, the dimensionless amplitudes of the TE-modal fields
(33) can be written as follows:

V ′n (ξ, τ) = −e−βn τ
√

$2 + β2
n cos (ϑ + δ)

I ′n (ξ, τ) = −e−βn τ
√

$2 − 1 + β2
n cos (ϑ)

hn (ξ, τ) = e−βn τ sin (ϑ)

(54)

where 0 ≤ βn ≤ 1, $ = ω/ω′n, ω is a given frequency, and

δ = sin−1
(
βn/

√
$2 + β2

n

)
= cos−1

(
$/

√
$2 + β2

n

)

ϑ = ωt− γnz + ϕ ≡ $τ − ξ
√

$2−1 + β2
n + ϕ.

(55)

7.1. Special Value of the Lossy Parameter %

In Equation (46), one can put βn = 1 as a possible particular case. This
supposition specifies the value of the lossy parameter, %, as % = νn.
Substitution of βn = 1 to (46) turns that KGE into one-dimensional
wave equation for h̃n ≡ h̃w

n , i.e.,

∂2
τ h̃w

n (ξ, τ)− ∂2
ξ h̃w

n (ξ, τ) = 0. (56)

This equation supports two linearly independent solutions as

h̃w
n (ξ, τ) = w− (τ − ξ) + w+ (τ + ξ) (57)

where w− and w+ are arbitrary functions twice differentiable by
their arguments. Solution w− represents a waveform traveling along
the waveguide, the other one, w+, corresponds to the waveform
propagating in opposite direction.

For example, take the first solution, w− (τ − ξ) , in the form of
(49) with βn = 1 and cn = 1. Then substitute that to formula (45) and
rewrite the result in real time, t, and coordinate z (for clearness) as

hw
n (z, t) = e−ω′nt sin (ωt− z ω/c + ϕ) (58)
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where ω′n = νnc is the cut-off frequency. This solution satisfies to the
KGE (44) with βn = 1. Formulas (28) supply with the other modal
amplitudes as

Vw
n = −e−ω′nt [$ cos (ωt− z ω/c + ϕ)− sin (ωt− z ω/c + ϕ)]

Iw
n = −e−ω′nt $ cos (ωt− z ω/c + ϕ) .

(59)

7.2. Dynamics of the Energetic Modal Characteristics

Explicit time-domain solution (54) enables us to calculate the
dimensionless amplitude, P ′z n, of the modal energy flux density what
results in

P ′z n (ξ, τ) = e−2βn τ 1
2

√
$2−1 + β2

n

[
$ +

....P ′
z n (ϑ)

]
....P ′

z n (ϑ) = $ cos (2ϑ)− βn sin (2ϑ)
(60)

where
....P ′

zn is a dynamic part dependent on time and z periodically,
see ϑ in (55) . The dimensionless amplitude, W ′

n, of the stored energy
density is

W ′
n (ξ, τ) = e−2βn τ 1

2
[
$2 + β2

n +
....W ′

n (ϑ)
]

....W ′
n (ϑ) =

(
$2−1

)
cos (2ϑ)−$βn sin (2ϑ)

(61)

where
....W ′

n is a part periodically dependent on time and z.
In Fig. 1, dependence on time, τ , of the energy flux density,

P ′z n (0, τ), and the energy density, W ′
n (0, τ), are exhibited for a fixed

position, ξ = 0, of the waveguide cross section. In Fig. 1(a), the
graphical results correspond to the value βn = 0 of the lossy parameter.
In other words, this is the case of the lossless hollow waveguide.
In Fig. 1(b), the results correspond to the lossy waveguide where
βn = 0.05.

Periodical time-dependence of W ′
n (0, τ) (in Fig. 1(a)) suggests

that a wave process of exchange by energy between some constituent
parts of the modal field should accompany the phenomenon of the field
propagation. Glancing at the field composition (33) one can conclude
that the energy of E ′n-field is accumulated completely in the transverse
field component and equal to V ′2n /2. The energy of H′n-field should
be distributed between its transverse and longitudinal components
as I ′2n /2 and w′n = h2

n/2, respectively. One can expect that the
value V ′2n /2 prevails over the value I ′2n /2, generally speaking. This
supposition suggests to introduce a new energetic quantity, S ′n (ξ, τ),
specified in (62) and named next as a “surplus” of energy stored in the
transverse field components

S ′n (ξ, τ) =
(V ′2n − I ′2n

)
/2 and w′n (ξ, τ) = h2

n/2. (62)
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Figure 1. Time dependence of the energy flow density, P ′z n(ξ, τ), and
the energy density, W ′

n(ξ, τ) for $ = 1.3, ξ = 0 and (a) βn = 0, (b)
βn = 0.05.
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Figure 2. Wave process of exchange by energy between the surplus
of energy, S′n(ξ, τ), stored in the transverse field components and the
energy, ω′n(ξ, τ), stored in the longitudinal field component; $ = 1.3,
ξ = 0, and (a) βn = 0, (b) βn = 0.05.

Figure 2(a) corroborates that above-mentioned supposition about
the energetic wave process is true in the case of lossless hollow cavity.
Moreover, similar wave process occurs for the lossy waveguide as that
confirms the data in Fig. 2(b).

Instant velocity, v′n, as a function of the variables (ξ, τ) is

v′n (ξ, τ) /c = P ′z n (ξ, τ) /W ′
n (ξ, τ) (63)

accordingly to definition (43) .
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Figure 3. Normalized by c instant velocity of transportation energy,
v′/c, for $ = 1.3, ξ = 0 and (a) βn = 0; (b) βn = 0.05; (c) βn = 0.2.

In the case of βn = 0, formula (63) can be rearranged in the form
of

v′n/c =
$
√

$2−1 {1 + cos [2ϑ (ξ, τ)]}
$2 + ($2−1) cos [2ϑ (ξ, τ)]

(64)

via substitution of (60) and (61) to (63). This result enables to
establish possible extrema values of the velocity of transportation of
the modal field energy. Minimal value, vmin

n = 0, can be achieved by
the reasons of either $2 = 1 (i.e., ω = ω′n) or cos [2ϑ (ξ, τ)] = −1. The
latter is supplied with the energetic wave process which goes in parallel
to the field propagation. Maximal value is

vmax
n /c = 2$

√
$2−1/

(
2$2−1

)
(65)

under condition cos [2ϑ (ξ, τ)] = 1 in (64) . It is appropriate to notice
that vmax

n never exceeds the light speed, c.
In Fig. 3, time-dependence of v′n (0, τ) /c is presented for the

lossless waveguide (βn = 0) and for the lossy ones.
Averaged value of v′n (ξ, τ) /c over time-interval 0 ≤ t ≤ T is

defined as

v̄′n/c =
1
T

∫ T+θ

θ

P ′z n (ξ, τ)
W ′

n (ξ, τ)
dt =

1
T

∫ T+θ

θ

√
$2−1+β2

n

[
$+

....P ′
z n (ϑ)

]

$2 + β2
n +

....W ′
n (ϑ)

dt

(66)
where T = 2π/ω, θ is a constant, for ϑ as ϑ (z, t) see (55) . As far as

∫ T+θ

θ

....P ′
z n (ϑ (z, t)) dt =

∫ T+θ

θ

....W ′
n (ϑ (z, t)) dt = 0, (67)

integration by formula (66) results in

v̄′n/c =
$

√
$2−1 + β2

n

$2 + β2
n

≡ ω
√

ω2 − ω′2n (1− β2
n)

ω2 + ω′2n β2
n

(68)
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where $ = ω/ω′n, ω is a given frequency, ω′n = νnc is the cut-off
frequency.

If βn = 0 then v̄′n = c
√

ω2−ω′2n /ω < c what coincides with the
classical result. If βn = 1 then v̄′n = c ω2/

(
ω2 + ω′2n

)
< c for solution

(58) .

8. FUNDAMENTAL SOLUTION

Equations (45) and (46) have so-called fundamental solution [8] as

Fn (ξ, τ) =
1
2
H (τ− |ξ|) e−βnτJ0

(
αn

√
τ2−ξ2

)
(69)

where αn =
√

1−β2
n ≤ 1, 0 ≤ βn ≤ 1, J0 (·) is the Bessel function

of zero order, and H (τ− |ξ|) is the Heaviside unit step function§.
The first factor, H (τ− |ξ|) , in (69) symbolizes correspondence of the
solution to the causality principle. Substitution of the function Fn to
formulas (28) results in the modal amplitudes of the transverse field
components denoted as

VF
n (ξ, τ) = 0.5H (τ− |ξ|) e−βnτ [αn J1 (αn`) (τ/`) + βnJ0 (αn`)]

IF
n (ξ, τ) = 0.5H (τ− |ξ|) e−βnτ [αn J1 (αn `) (ξ/`)]

(70)

where ` =
√

τ2−ξ2. In the case βn = 1, the solutions (69) and (70) are

Fn = 1
2H (τ− |ξ|) e−τ , IF

n = 0, VF
n = 1

2H (τ− |ξ|) e−τ . (71)

In Fig. 4, time dependence of the modal amplitudes, Fn and VF
n ,

are exhibited for the lossless waveguide provided that z = 0 and βn = 0.
As far as IF

n (ξ, τ) is proportional to ξ, the amplitude IF
n (0, τ) = 0.

§ H (τ − |ξ|) = 1 if τ ≥ |ξ| and H (τ − |ξ|) = 0 if τ < |ξ| .
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Figure 4. Time-dependence of
the amplitudes hn ≡ =n and V =

n
when ξ = 0, βn = 0.
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Figure 5. Time-dependence of
the surplus of energy, S=n , and
the energy, ω=n , stored in the
longitudinal component hn ≡ =n

when ξ = 0, βn = 0.
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Fig. 5 illustrates the energetic wave process for fundamental
solution. The partners in this wave process are specified by formulas

SF
n (ξ, τ) =

(VF2
n − IF2

n

)
/2 and wF

n (ξ, τ) = F2
n/2 ; τ ≥ ξ. (72)

9. DISCUSSION

In our statement of the problem, we supposed that the waveguide
is filled with a medium which has the relative permittivity and
permeability, ε and µ, equal to 1 (the same as for the free space). The
constant conductivity, σ ≥ 0, was introduced heuristically for modeling
possible losses in the waveguide.

In realistic situations, waveguides can be filled with a dielectric
medium. In this case, the second equation in (1) should be replaced
by

∇×H (R, t) = ∂tD (R, t) + σE (R, t) (73)

where D (E)=ε0E+P (E) , P (E) is the polarization vector induced by
the field E applied to the material, D is the electric flux density.
Dependence D (E) is known as the material constitutive relation. The
latter is specified completely if the constitutive relation P (E) is given
somehow.

Relationship between P and E should be dynamic in the time-
domain theory. That can be established by solving appropriate motion
equation for the polarization vector, P. There are two wide classes
of dielectric materials each of which has own physical mechanism of
polarization. Atoms and molecules of so-called Lorentz media have a
distorting mechanism of polarization. Relationship between P and E
is describable by Newton’s motion equation as

d2

dt2
P (R,t)+2γ0

d

dt
P (R,t)+ω2

0 P (R,t) = ε0Nq2
e/ (meε0) E (R,t) . (74)

where γ0 and ω0 are the material constants, me and qe are the
mass an unsigned charge of electron, N is the number density of the
polarizable atoms and/or molecules per unit of volume. In the static
case, time derivative, d

dt , turns into zero the first two terms in (74) .
Hence, that equation yields constitutive relation P = ε0χsE where
χs=Nq2

e/
(
ε0meω

2
0

)
is the static dimensionless susceptibility. In this

case, constitutive relation (73) yields D = ε0εE , where ε=1+χs,what
corresponds to an instantaneous polarization, physically.

Physical mechanism of so-called Debye media is orientational.
Relationship between P and E is describable by Debye equation as

d

dt
P (R,t) + (1/τ0)P (R,t) = ε0 (χ/τ0) E (R,t) (75)
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where τ0 = 2γ0/ω2
0 is a relaxation time. Molecules H2O, N2, O2, O3,

C, CO, SO2, HCl, etc. compose polar dielectrics. The human and
animal tissues involve water (H2O) in high doses. The tissues should
be interpreted as polar dielectrics in biological studies when interacting
with electromagnetic radiation.

Combination of the Maxwell’s equations with ∂t and the dynamic
constitutive relations (74) or (75) , where the time derivative plays
essential role, is prospective for studies of dielectrics with temporal
dispersion. One can find realization of this idea for solving a cavity
problem in [23]. Expansion of this idea on a wide class of the waveguide
problems can be made, as well.
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