Vol. 127
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-04-20
Study and Simulation of an Edge Couple Split Ring Resonator (EC-SRR) on Truncated Pyramidal Microwave Absorber
By
Progress In Electromagnetics Research, Vol. 127, 319-334, 2012
Abstract
Split ring resonator (SRR) can potentially be used as a design to be incorporated onto the truncated pyramidal microwave absorber. This study considers three different patterns of edge couple split ring resonator (EC-SRR) designs. Each EC-SRR design is then placed onto the truncated pyramidal microwave absorber. Outer split gap dimension widths of the EC-SRR are varied, and the various S21 performances are compared. This EC-SRR truncated pyramidal microwave absorber is simulated using CST Microwave Studio simulation software. The study and simulation are performed in low frequency range (0.01 GHz to 1 GHz) as well as in microwave frequencies range (1 GHz to 20 GHz). Simulation results of this EC SRR show improvement of reflection loss and S11 performance in the high frequency range of the pyramidal truncated microwave absorber.
Citation
Hassan Nornikman, Badrul Hisham Ahmad, Mohamad Zoinol Abidin Abdul Aziz, Mohd Fareq Bin Abd Malek, Hindstan Imran, and Abdul Rani Othman, "Study and Simulation of an Edge Couple Split Ring Resonator (EC-SRR) on Truncated Pyramidal Microwave Absorber," Progress In Electromagnetics Research, Vol. 127, 319-334, 2012.
doi:10.2528/PIER12030601
References

1. Al-Hasan, M. J., T. A. Denidni, and A. Sebak, "A new UC-EBG based-dielectric resonator antenna for millimeter-wave applications ," 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), 1274-1276, 2011.
doi:10.1109/APS.2011.5996520

2. Elsheakh, D. N., H. A. Elsadek, E. A. Abdallah, M. F. Iskander, and H. Elhenawy, "Ultrawide bandwidth umbrella-shaped microstrip monopole antenna using spiral artificial magnetic conductor (SAMC)," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1255-1258, 2009.
doi:10.1109/LAWP.2009.2036571

3. Qiang, W. Y. and F. Tao, "The study on a patch antenna with PBG structure," Third International Symposium onIntelligent Information Technology Application (IITA 2009), Vol. 3, 565-567, 2009.

4. Chang, K., Microwave Ring Circuit and Antennas, John Wiley, New York, 1996.

5. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

6. Katsarakis, N., T. Koschny, and M. Kafesaki, "Electric coupling to the magnetic resonance of split ring resonators," Applied Physics Letters, Vol. 84, No. 15, Apr. 12, 2004.

7. Wu, B., B. Li, T. Su, and C.-H. Liang, "Study on transmission characteristic of split ring resonator defect ground structure," PIERS Online, Vol. 2, No. 6, 710-714, 2006.
doi:10.2529/PIERS060903034927

8. Garcia-Garcia, J., F. Aznar, M. Gil, J. Bonache, and F. Martin, "Size reduction of SRRs for metamaterial and left handes media design," PIERS Online, Vol. 3, No. 3, 266-269, 2007.
doi:10.2529/PIERS060727140931

9. Niu, J.-X., X.-L. Zhou, and L.-S. Wu, "Analysis and application of a novel structures based on split ring resonators and coupled lines," Progress In Electromagnetics Research, Vol. 75, 153-162, 2007.
doi:10.2528/PIER07060101

10. Niu, J.-X. and X.-L. Zhou, "Analysis of balanced composite right/left handed structure based on different dimensions of complementary split ring resonators," Progress In Electromagnetics Research, Vol. 74, 341-351, 2007.
doi:10.2528/PIER07051802

11. Nornikman, H., F. Malek, P. J. Soh, and A. A. H. Azremi, "Design a rice husk pyramidal microwave absorber with split ring resonator," The Asia-Pacific Symposium on Applied Electromagnetics and Mechanics 2010 (APSAEM 2010), 2010.

12. Rahim, M. K. A., H. A. Majid, and T. Masri, "Microstrip antenna incorporated with left-handed metamaterial at 2.7 GHz," IEEE International Workshop on Antenna Technology (iWAT 2009), 1-4, 2009.
doi:10.1109/IWAT.2009.4906918

13. Ezanuddin, A. A. M., F. Malek, and P. J. Soh, "Investigation of complementary split ring ring resonator with dielectric ring," Loughborough Antennas and Propagation Conference (LAPC), 297-300, 2010.
doi:10.1109/LAPC.2010.5665999

14. Yuandan, D. and T. Itoh, "Miniaturized patch antennas loaded with complementary split-ring resonators and reactive impedance surface," 5th European Conference on Antennas and Propagation (EUCAP), 2415-2418, 2011.

15. Quevedo-Teruel, O., M. N. M. Kehn, and E. Rajo-Iglesias, "Dual-band patch antennas based on short-circuited split ring resonators," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 8, 2758-2765, 2011.
doi:10.1109/TAP.2011.2158786

16. Jiun-Peng, C. and H. Powen, "A miniaturized slot dipole antenna capacitively fed by a CPW With split ring resonators," 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), 779-781, 2011.
doi:10.1109/APS.2011.5996388

17. Lin, H.-H., C.-Y. Wu, and S.-H. Yeh, "Metamaterial enhanced high gain antenna for WiMAX application," 2007 IEEE Region 10 Conference (TENCON 2007), 1-3, 2007.
doi:10.1109/TENCON.2007.4428962

18. Majid, H. A., M. Rahim, and T. Masri, "Left handed metamaterial design for microstrip antenna application," IEEE International RF and Microwave Conference (RFM 2008), 218-221, 2008.
doi:10.1109/RFM.2008.4897426

19. Lai, X., Q. Li, P.-Y. Qin, B. Wu, and C.-H. Liang, "A novel wideband bandpass filter based on complementary split-ring resonator," Progress In Electromagnetics Research C, Vol. 1, 177-184, 2008.
doi:10.2528/PIERC08013104

20. Bilotti, F. and L. Vegni, Design of Metamaterial-Based Resonant Microwave Absorbers with Reduced Thicness and Absence of Metallic Backing, Springer Sciences | Business Media B. V., 2009.

21. Rahim, M. K. A., H. A. Majid, and T. Masri, "Microstrip antenna incorporated with left-handed metamaterial at 2.7 GHz," IEEE International Workshop on Antenna Technology (iWAT 2009), 1-4, 2009.
doi:10.1109/IWAT.2009.4906918

22. Feresidis, A. and J. C. Vardaxoglou, "Flat plate millimetre wave antenna based on partially reflective FSS," International Conference on Antennas and Propagation, Vol. 1, 33-36, 2001.
doi:10.1049/cp:20010232

23. Liu, S.-H., C.-H. Liang, W.-Ding, L.-Chen, and W.-T. Pan, "Electromagnetic wave propagation through a slan waveguide of uniaxially anisotropic dispersive metamaterial," Progress In Electromagnetics Research, Vol. 76, 467-475, 2007.
doi:10.2528/PIER07071905

24. Hwang, R.-B., H.-W. Liu, and C. Y. Chin, "A matematrial based E-plane horn antenna," Progress In Electromagnetics Research, Vol. 93, 275-289, 2009.
doi:10.2528/PIER09050606

25. Veselago, V. G., "The Electrodynamics of substances with simultaneously negative values of permittivity and permeability," Soviet Physics USPEKI, Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

26. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

27. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, 2075-2084, 1999.
doi:10.1109/22.798002

28. Saib, A., L. Bednarz, R. Daussin, C. Bailly, X. Lou, J.-M. Thomassin, C. Pagnoulle, C. Detrembleur, and R. Jerome, "Carbon nanotube composites for broadband microwave absorbing materials," 2005 European Microwave Conference, Vol. 1, 2005.

29. Kotsuka, Y. and H. Yamazaki, "Fundamental investigation on a weakly magnetized ferrite absorber," IEEE Transaction on Electromagnetic Compatibility, Vol. 42, No. 2, 116-124, 2000.
doi:10.1109/15.852405

30. Nedkov, I., L. Milenova, and N. Dishovsky, "Microwave polymer-ferroxide film absorbers," IEEE Transactions on Magnetics, Vol. 30, No. 6, 4545-4547, 1994.
doi:10.1109/20.334143

31. Nornikman, H., F. B. A. Malek, P. J. Soh, A. A. H. Azremi, F. H. Wee, and A. Hasnain, "Parametric study of pyramidal microwave absorber using rice husk," Progress In Electromagnetics Research, Vol. 104, 145-166, 2010.
doi:10.2528/PIER10041003

32. Nornikman, H., F. Malek, M. Ahmed, F. H. Wee, P. J. Soh, A. A. H. Azremi, S. A. Ghani, A. Hasnain, and M. N. Taib, "Setup and results of pyramidal microwave absorbers using rice husks," Progress In Electromagnetics Research, Vol. 111, 141-161, 2011.
doi:10.2528/PIER10101203

33. Malek, M., E. M. Cheng, O. Nadiah, H. Nornikman, M. Ahmed, M. Z. A. Abd Aziz, A. R. Othman, P. J. Soh, A. A. H. Azremi, A. Hasnain, and M. N. Taib, "Rubber tire dust-rice husk pyramidal microwave absorber," Progress In Electromagnetics Research, Vol. 117, 449-447, 2011.

34. Ezanuddin, A. A. M., F. Malek, and P. J. Soh, "Investigation of complementary split ring resonators with dielectric ring," 2010 Loughborough Antennas and Propagation Conference (LAPC), 297-300, 2010.
doi:10.1109/LAPC.2010.5665999

35. Majid, H. A., M. Rahim, and T. Masri, "Left handed metamaterial design for microstrip antenna application," IEEE International RF and Microwave Conference (RFM 2008), 218-221, 2008.
doi:10.1109/RFM.2008.4897426

36. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011.

37. Zhu, B., Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Polarization insensitive metamaterial absorber with incident angle," Progress In Electromagnetics Research, Vol. 101, 231-239, 2010.
doi:10.2528/PIER10011110

38. Wang, J., S. Qu, Z. Fu, H. Ma, Y. Yang, X. Wu, Z. Xu, and M. Hao, "Three-dimensional metamaterial microwave absorbers composed of coplanar magnetics and electric resonators ," Progress In Electromagnetics Research Letters, Vol. 7, 15-24, 2009.
doi:10.2528/PIERL09012003

39. Das, S., A. Kundu, S. Maity, S. Dhar, and B. Gupta, "Novel compact CPW filter for MICs using metamaterial structures," 2011 11th Mediterranean Microwave Symposium (MMS), 286-289, 2011.
doi:10.1109/MMS.2011.6068582

40. Kern, D. J., D. H. Werner, A. Monorchio, L. Lanuzza, and M. J. Wilhelm, "The Design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 1, Part 1, 8-17, 2005.

41. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, No. 18, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966

42. Smith, D. R., W. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Negative permeability from split ring resonator arrays ," 2000 Conference on Lasers and Electro-Optics Europe, 2000.

43. Nornikman, H., F. Malek, P. J. Soh, and A. A. H. Azremi, "Design a rice husk pyramidal microwave absorber with split ring resonator ," The Asia-Pacific Symposium on Applied Electromagnetics and Mechanics 2010 (APSAEM 2010), 2010.

44. Nornikman, H., P. J. Soh, and A. A. H. Azremi, "Performance simulation of pyramidal and wedge microwave absorbers," 3rd Asian Modelling Symposium (AMS 2009), 649-654, 2009.

45. Nornikman, H., P. J. Soh, and A. A. H. Azremi, "Modelling simulation stage of pyramidal and wedge absorber microwave absorber design," 4th International Conference on Electromagnetic Near Field Characterization and Imaging (ICONIC'09), 2009.

46. Nornikman, H., P. J. Soh, A. A. H. Azremi, F. H. Wee, and F. M. Malek, "Investigation of an agricultural waste as an alternative material for microwave absorber," PIERS Online, Vol. 5, No. 6, 506-510, 2009.

47. Nornikman, H., Malek, F., P. J. Soh, and A. A. H. Azremi, "E®ect on source signal condition for pyramidal microwave absorber performance ," International Conference on Computer & Communication Engineering (ICCCE 2010), 289-293, 2010.