Vol. 127
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-04-16
An Efficient Method for Computing Highly Oscillatory Physical Optics Integral
By
Progress In Electromagnetics Research, Vol. 127, 211-257, 2012
Abstract
In this work, we use the numerical steepest descent path (numerical SDP) method in complex analysis theory to calculate the highly oscillatory physical optics (PO) integral with quadratic phase and amplitude variations on the triangular patch. The Stokes' phenomenon will occur due to various asymptotic behaviors on different domains. The stationary phase point contributions are carefully studied by the numerical SDP method and complex analysis using contour deformation. Its result agrees very well with the leading terms of the traditional asymptotic expansion. Furthermore, the resonance points and vertex points contributions from the PO integral are also extracted. Compared with traditional approximate asymptotic expansion approach, our method has significantly improved the PO integral accuracy by one to two digits (10-1 to 10-2) for evaluating the PO integral. Moreover, the computation effort for the highly oscillatory integral is frequency independent. Numerical results for PO integral on the triangular patch are given to verify the proposed numerical SDP theory.
Citation
Yumao Wu, Li Jun Jiang, and Weng Cho Chew, "An Efficient Method for Computing Highly Oscillatory Physical Optics Integral," Progress In Electromagnetics Research, Vol. 127, 211-257, 2012.
doi:10.2528/PIER12022308
References

1. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, New York, 1995.

2. Knott, E. F., J. F. Shaeffer, and M. T. Tuley, Radar Cross Section, Artech House, Norwood, 1993.

3. Ufimtsev, P. Y., Fundamentals of the Physical Theory of Diffraction, John Wiley and Sons, Inc., New York, 2007.
doi:10.1002/0470109017

4. Macdonald , H. M., "The effect produced by an obstacle on a train of electric waves," Phil. Trans. Royal Soc. London, Series A, Math. Phys. Sci., Vol. 212, 299-337, 1913.
doi:10.1098/rsta.1913.0010

5. Ludwig, A. C., "Computation of radiation patterns involving numerical double integration," IEEE Trans. Antennas Propag., Vol. 16, No. 6, 767-769, Nov. 1968.
doi:10.1109/TAP.1968.1139296

6. Gordon, W. B., "Far-field approximations to the Kirchhoff-Helmholtz representation of scattered fields," IEEE Trans. Antennas Propag., Vol. 23, No. 4, 590-592, Jul. 1975.
doi:10.1109/TAP.1975.1141105

7. Gordon, W. B., "High-frequency approximations to the physical optics scattering integral ," IEEE Trans. Antennas Propag., Vol. 42, No. 3, 427-432, Mar. 1994.
doi:10.1109/8.280733

8. Bolukbas, D. and A. A. Ergin, "A radon transform interpretation of the physical optics integral," Microw. Opt. Tech. Lett., Vol. 44, No. 3, 284-288, Feb. 2005.
doi:10.1002/mop.20612

9. Serim, H. A. and A. A. Ergin, "Computation of the physical optics integral on NURBS surfaces using a radon transform interpretation," IEEE Antennas Wireless Propag. Lett., Vol. 7, 70-73, 2008.
doi:10.1109/LAWP.2008.915811

10. Ulku, H. A. and A. A. Ergin, "Radon transform interpretation of the physical optics integral and application to near and far field acoustic scattering problems," IEEE Antennas and Propagation Society International Symposium, APSURSI, 2010.

11. Infante, L. and M. Stefano, "Near-field line-integral representation of the Kirchhoff-type aperture radiation for parabolic reflector," IEEE Antennas Wireless Propag. Lett., Vol. 2, No. 1, 273-276, 2003.
doi:10.1109/LAWP.2003.820685

12. Burkholder, R. J. and T. H. Lee, "Adaptive sampling for fast physical optics numerical integration," IEEE Trans. Antennas Propag., Vol. 53, No. 5, 1843-1845, May 2005.
doi:10.1109/TAP.2005.846813

13. Conde, O. M., J. Perez, and M. F. Catedra, "Stationary phase method application for the analysis of radiation of complex 3-D conducting structures," IEEE Trans. Antennas Propag., Vol. 49, No. 5, 724-731, May 2001.
doi:10.1109/8.929626

14. Catedra, M. F., C. Delgado, S. Luceri, O. G. Blanco, and F. S. Adana, "Physical optics analysis of multiple interactions in large scatters using current modes," IEEE Trans. Antennas Propag., Vol. 54, No. 3, 985-994, Mar. 2006.
doi:10.1109/TAP.2006.869893

15. Delgado, C., J. M. Gomez, and M. F. Catedra, "Analytical field calculation involving current modes and quadratic phase expressions," IEEE Trans. Antennas Propag., Vol. 55, No. 1, 233-240, Jan. 2007.
doi:10.1109/TAP.2006.888470

16. Catedra, M. F., C. Delgado, and I. G. Diego, "New physical optics approach for an efficient treatment of multiple bounces in curved bodies defined by an impedance boundary condition," IEEE Trans. Antennas Propag., Vol. 56, No. 3, 728-736, Mar. 2008.
doi:10.1109/TAP.2008.916938

17. Vico, F., M. Ferrando, and A. Valero, "A new fast physical optics for smooth surfaces by means of a numerical theory of diffraction ," IEEE Trans. Antennas Propag., Vol. 58, No. 3, 773-789, Mar. 2010.
doi:10.1109/TAP.2009.2039308

18. Carluccio, G., M. Albani, and P. H. Pathak, "Uniform asymptotic evaluation of surface integrals with polygonal integration domains in terms of UTD transition functions ," IEEE Trans. Antennas Propag., Vol. 58, No. 4, 1155-1163, Apr. 2010.
doi:10.1109/TAP.2010.2041171

19. Albani, M., G. Carluccio, and P. H. Pathak, "Uniform ray description for the PO scattering by vertices in curved surface with curvilinear edges and relatively general boundary conditions," IEEE Trans. Antennas Propag., Vol. 59, No. 5, 1587-1596, May 2011.
doi:10.1109/TAP.2011.2123062

20. Harrington, R., Field Computation by Moment Method, Macmillan, New York, 1968.

21. Borovikov, V. A., Uniform Stationary Phase Method, Institution of Electrical Engineers, London, 1994.

22. James, G. L., "Geometrical Theory of Diffraction for Electromagnetic Waves," Peregrinus, Stevenage, 1980.

23. Langdon, S. and S. N. Chandler-Wilde, "A wavenumber independent boundary element method for an acoustic scattering problem," SIAM J. Numer. Anal., Vol. 43, No. 6, 2450-2477, 2006.
doi:10.1137/S0036142903431936

24. Bruno, O. P., C. A. Geuzaine, J. A. Monro, Jr., and F. Reitich, "Prescribed error tolerances within fixed computational times for scattering problems of arbitrarily high frequency: The convex case," Phil. Trans. Royal Soc. London, Series A, Vol. 362, 629-645, 2004.
doi:10.1098/rsta.2003.1338

25. Geuzaine, C., O. Bruno, and F. Reitich, "On the O(1) solution of multiple-scattering problems," IEEE Trans. Magn., Vol. 41, No. 5, 1498-1491, May 2005.
doi:10.1109/TMAG.2005.844567

26. Bruno, O. P. and C. A. Geuzaine, "An O(1) integration scheme for three-dimensional surface scattering problems," J. Comp. Appl. Math., Vol. 204, No. 2, 463-476, 2007.
doi:10.1016/j.cam.2006.02.050

27. Engquist, B., E. Fatemi, and S. Osher, "Numerical solution of the high frequency asymptotic expansion for the scalar wave equation," J. Comput. Phys., Vol. 120, No. 1, 145-155, Aug. 1995.
doi:10.1006/jcph.1995.1154

28. Engquist, B. and O. Runborg, "Multi-Phase computations in geometrical optics," J. Comp. Appl. Math., Vol. 74, No. 1-2, 175-192, 1996.
doi:10.1016/0377-0427(96)00023-4

29. Engquist, B. and O. Runborg, "Computational high frequency wave propagation," Acta Numerica, Vol. 12, 181-266, 2003.
doi:10.1017/S0962492902000119

30. Iserles, A. and S. P. NΦsett, "Quadrature methods for multivariate highly oscillatory integrals using derivatives," Math. Comp., Vol. 75, No. 255, 1233-1258, 2006.
doi:10.1090/S0025-5718-06-01854-0

31. Iserles, A. and S. P. NΦsett, "On the computation of highly oscillatory multivariate integrals with critical points," BIT, Vol. 46, No. 3, 549-566, 2006.
doi:10.1007/s10543-006-0071-2

32. Iserles, A. and S. P. NΦsett, "From high oscillation to rapid approximation III: Multivariate expansions," IMA J. Num. Anal., Vol. 29, No. 4, 882-916, 2009.
doi:10.1093/imanum/drn020

33. Iserles, A. and D. Levin, "Asymptotic expansion and quadrature of composite highly oscillatory integrals," Math. Comp., Vol. 80, No. 273, 279-296, 2011.
doi:10.1090/S0025-5718-2010-02386-5

34. Huybrechs, D. and S. Vandewalle, "The construction of cubature rules for multivariate highly oscillatory integrals," Math. Comp., Vol. 76, No. 260, 1955-1980, 2007.
doi:10.1090/S0025-5718-07-01937-0

35. Huybrechs, D. and S. Vandewalle, "A sparse discretisation for integral equation formulations of high frequency scattering problems," SIAM J. Sci. Comput., Vol. 29, No. 6, 2305-2328, 2007.
doi:10.1137/060651525

36. Asheim, A. and D. Huybrechs, "Asymptotic analysis of numerical steepest descent with path approximations," Found. Comput. Math., Vol. 10, No. 6, 647-671, 2010.
doi:10.1007/s10208-010-9068-y

37. Asheim, A., "Numerical methods for highly oscillatory problems,", Ph.D. Dissertation,-Norwegian University of Science and Technology, Department of Mathematical Sciences, 2010.

38. Wong, R., Asymptotic Approximations of Integrals, New York, 2001.

39. Kouyoumjian, R. G. and P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface," Proceedings of the IEEE, Vol. 62, No. 11, 1448-1461, Nov. 1974.
doi:10.1109/PROC.1974.9651

40. Lee, S. W. and G. A. Deschamps, "A uniform asymptotic theory of electromagnetic diffraction by a curved wedge," IEEE Trans. Antennas Propag., Vol. 24, No. 1, 25-34, Jan. 1976.
doi:10.1109/TAP.1976.1141283

41. Ikuno, H. and M. Nishimoto, "Calculation of transfer functions of three-dimensional indented objects by the physical optics approximation combined with the method of stationary phase," IEEE Trans. Antennas Propag., Vol. 39, No. 5, 585-590, May 1991.
doi:10.1109/8.81484

42. Jones, D. S. and M. Kline, "Asymptotic expansion of multiple integrals and the method of stationary phase," J. Math. Phys., Vol. 37, 1-28, 1958.

43. Chako, N., "Asymptotic expansions of double and multiple integral," J. Inst. Math. Applic., Vol. 1, No. 4, 372-422, 1965.
doi:10.1093/imamat/1.4.372

44. Davis, C. P. and W. C. Chew, "Frequency-independent scattering fom a flat strip with TEz-polarized fields," IEEE Trans. Antennas Propag., Vol. 56, No. 4, 1008-1016, Apr. 2008.
doi:10.1109/TAP.2008.919196

45. Sha, W. E. I. and W. C. Chew, "High frequency scattering by an impenetrable sphere," Progress In Electromagnetics Research, Vol. 97, 291-325, 2009.
doi:10.2528/PIER09100102

46. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, Norwood, MA, Dover, 1972.

47. Josef, S. and B. Roland, Introduction to Numerical Analysis, Springer-Verlag, New York, 1980.