Vol. 127
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-04-05
An Electronically Controllable Method for Radar Cross Section Reduction for a Microstrip Antenna
By
Progress In Electromagnetics Research, Vol. 127, 15-30, 2012
Abstract
PIN diodes are used to electronically switch a rectangular microstrip antenna between the optimal radiation state and the low radar cross section (RCS) state in this paper. A useful loading circuit is proposed. The circuit is connected between the patch and the ground plane of the antenna at each loading position. The loading positions of the circuit are determined by studying magnitude distributions of the induced electric field and analyzing statistically how many times that the maximum electric field occurs in each area for each discussed incident angle. PIN diodes are equivalent to capacitances and resistances when diodes are reverse-biased and forward-biased, respectively. When the antenna is not in service and excited by an incident plane wave, obvious RCS reduction is realized. In addition, the radiation performances are well maintained when the antenna is in service for transmitting or receiving signals.
Citation
Yuping Shang, Shao-Qiu Xiao, Jia-Lin Li, and Bing-Zhong Wang, "An Electronically Controllable Method for Radar Cross Section Reduction for a Microstrip Antenna," Progress In Electromagnetics Research, Vol. 127, 15-30, 2012.
doi:10.2528/PIER12022203
References

1. Vedaprabhu, B. and K. J. Vinoy, "An integrated wideband multifunctional antenna using a microstrip patch with two U-slots," Progress In Electromagnetics Research B, Vol. 22, 221-235, 2010.
doi:10.2528/PIERB10050402

2. Zhang, Y., B.-Z.Wang, W. Shao, W. Yu, and R. Mittra, "Artificial ground planes for performance enhancement of microstrip antennas," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 4, 597-606, 2011.
doi:10.1163/156939311794500269

3. Jackson, D. R., "The RCS of a rectangular microstrip patch in a substrate-superstrate geometry ," IEEE Trans. on Antenna and Propagation, Vol. 38, No. 1, 2-8, 1990.
doi:10.1109/8.43583

4. Wilsen, C. B. and D. B. Davidson, "The radar cross section reduction of microstrip patches," IEEE Africon 4th, Vol. 2, No. 1, 730-733, 1996.

5. Pozar, D. M., "RCS reduction for a microstrip antenna using a normally biased ferrite substrate," Microwave and Guided Wave Letters, Vol. 2, No. 5, 196-198, 1992.
doi:10.1109/75.134353

6. Yang, H.-Y., J. A. Castaneda, and N. G. Alexopoulos, "Multifunctional antennas with low RCS," Antennas and Propagation Society International Symposium, Vol. 4, 2240-2243, 1992.

7. Volakis, J. L., A. Alexanian, and J. M. Lin, "Broadband RCS reduction of rectangular patch by using distributed loading," Electronics Letters, Vol. 28, 2322-2323, 1992.

8. Yang, H. and S. Gong, "RCS reduction technique out of operation of microstrip antennas," Journal of Microwaves, Vol. 20, No. 1, 35-39, 2004.

9. Ma, H., C. Xu, and H. Zheng, "Effect of impedance load on radiation and scattering of microstrip antenna," Modern Electronic Technology, Vol. 6, 6-7, 2004.

10. Zhao, S.-C., B.-Z. Wang, and Q.-Q. He, "Broadband radar cross section reduction of a rectangular patch antenna," Progress In Electromagnetics Research, Vol. 79, 263-275, 2008.
doi:10.2528/PIER07101002

11. Zhao, S.-C., B.-Z. Wang, and W. Shao, "Reconfigurable Yagi-Uda substrate for radar cross section reduction of patch antenna," Progress In Electromagnetics Research B, Vol. 11, 173-187, 2009.
doi:10.2528/PIERB08120101

12. Xu, H.-Y., H. Zhang, X. Yin, and K. Lu, "Ultra-wideband koch fractal antenna with low backscattering cross section," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17-18, 2615-2623, 2010.
doi:10.1163/156939310793675790

13. Zhu, X., W. Shao, J.-L. Li, and Y. Dong, "Design and optimization of low RCS patch antennas based on a genetic algorithm," Progress In Electromagnetics Research, Vol. 122, 327-339, 2012.
doi:10.2528/PIER11100703

14. Jiang, W., T. Hong, Y. Liu, S.-X. Gong, Y. Guan, and S. Cui, "A novel technique for radar cross section reduction of printed antennas," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 1, 51-60, 2010.
doi:10.1163/156939310790322145

15. Hong, T., L.-T. Jiang, Y.-X. Xu, S.-X. Gong, and W. Jiang, "Radiation and scattering analysis of a novel circularly polarized slot antenna," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 13, 1709-1720, 2010.

16. Ren, L.-S., Y.-C. Jiao, J.-J. Zhao, and F. Li, "RCS reduction for a FSS-backed reflectarray using a ring element," Progress In Electromagnetics Research Letters, Vol. 26, 115-123, 2011.
doi:10.2528/PIERL11071201

17. Aberle, J. T., M. Chu, and C. R. Birtcher, "Scattering and radiation properties of varactor-tuned microstrip antennas," AP-S, Vol. 4, 2229-2232, 1992.

18. Janaswamy, R. and S.-W. Lee, "Scattering from dipoles loaded with diodes," IEEE Trans. on Antenna and Propagation, Vol. 36, No. 11, 1649-1651, 1988.
doi:10.1109/8.9722

19. Bai, Y.-Y., S. Q. Xiao, M.-C. Tang, et al. "Wide-angle scanning phased array with pattern reconfigurable elements," IEEE Trans. on Antenna and Propagation, Vol. 59, No. 11, 4071-4076, 2011.
doi:10.1109/TAP.2011.2164176

20. Lin, S.-Y., Y.-C. Lin, and J.-Y. Lee, "T-strip FED patch antenna with reconfigurable polarization," Progress In Electromagnetics Research Letters, Vol. 15, 163-173, 2010.
doi:10.2528/PIERL10051801

21. Jamlos, M. F., O. A. Aziz, T. B. A. Rahman, M. R. B. Kamarudin, P. Saad, M. T. Ali, and M. N. Md Tan, "A reconfigurable radial line slot array (RLSA) antenna for beam shape and broadside application," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8-9, 1171-1182, 2010.
doi:10.1163/156939310791586007

22. Raedi, Y., S. Nikmehr, and A. Poorziad, "A novel bandwidth enhancement technique for X-band RF MEMS actuated reconfigurable reflectarray," Progress In Electromagnetics Research, Vol. 111, 179-196, 2011.
doi:10.2528/PIER10101201

23. Vendelin, G. D., A. M. Pavio, and U. L. Rohde, Microwave Circuit Design Using Linear and Nonlinear Techniques, Ch. 12, Ch. 3, John Wiley & Sons, Inc., New Jersey, 2005.

24. Zhou, B. and G.-Z. Lu, "RF PIN diode switch in reconfigurable antenna," Journal of Communication University of China (Science and Technology), Vol. 16, No. 4, 35-38, 2009.