Vol. 24
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-04-19
Statistical Analysis of Electromagnetic Field Inside a Jet Engine Using the Reverberation Chamber Approach
By
Progress In Electromagnetics Research M, Vol. 24, 157-165, 2012
Abstract
In this paper, the electromagnetic field distribution inside a jet engine is studied through full wave analysis. Results are statistically analyzed by comparisons to the models used for the reverberation chamber with a mechanical mode stirrer. The jet engine is simulated as an open cylinder containing one set of rotating blades by using 'Ansys R HFSS'. A simple Hertzian dipole illuminates the interior structure as an incident wave excitation representing a transmitting antenna radiating continuous wave fields. The field distribution inside the engine, which results from a distinct set of rotating positions of the blades, is primarily studied through the simulation program. In our case, the mechanical stirrer is represented by the rotating set of blades. The field values are extracted at different planes along the cylindrical engine, and the average field is statistically analyzed. We show that the squared magnitude of the field component along the engine's main axis has an exponential distribution compared to the theoretical exponential distribution proved in a reverberation chamber. This approach promises to act as a novel effective method to analyze the engine system without dealing with the complex details inside the engine cavity.
Citation
Aya Fekry Abdelaziz, Daniele Trinchero, and Tamer Khattab, "Statistical Analysis of Electromagnetic Field Inside a Jet Engine Using the Reverberation Chamber Approach," Progress In Electromagnetics Research M, Vol. 24, 157-165, 2012.
doi:10.2528/PIERM12021910
References

1. NASA/JSC/George Studor "Fly-by-wireless: A revolution in aerospace vehicle architecture for instrumentation and control,", http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20070013704 2007011172.pdf.
doi:10.1109/8.486313

2. Anastassiu, H. T., J. L. Volakis, D. C. Ross, and D. Andersh, "Electromagnetic scattering from simple jet engine models," IEEE Transactions on Antennas and Propagation, Vol. 44, 420-421, 1996.

3. Chan, K. K., R. Martin, and F. Tremblay, "Scattering from a cylinder with two sets of rotating blades," IEEE International Symposium on Antennas and Propagation Digest, 274-277, Montreal, PQ, Canda, Jul. 1997.
doi:10.1109/8.467644

4. Chia, T. T., R. J. Burkholder, and R. Lee, "The application of FDTD in hybrid methods for cavity scattering analysis," IEEE Transactions on Antennas and Propagation, Vol. 43, No. 10, 1082-1090, Oct. 1995.
doi:10.1109/MAP.2003.1282177

5. Anastassiu, H. T., "A review of electromagnetic scattering analysis for inlets, cavities, and open ducts," IEEE Antennas and Propagation Magazine, Vol. 45, 27-40, Dec. 2003.
doi:10.2528/PIER10033103

6. Lim, H. and N.-H. Myung, "A novel hybrid AIPO-MOM technique for jet engine modulation analysis," Progress In Electromagnetics Research, Vol. 104, 85-97, 2010.
doi:10.1109/TEMC.2008.918982

7. Naus, H. W., "Statistical electromagnetics: Complex cavities," IEEE Trans. Electromagn. Compat., Vol. 50, 316-324, May 2008.

8. Hill, D. A., Electromagnetic Fields in Cavities: Deterministic and Statistical Theory, John Wiley & Sons, Inc., 2009.

9. Hill, D. A., "Electromagnetic theory of reverberation chambers," U.S. Nat. Inst. Stand. Technol. Tech. Note 1506, 1998.

10. Crawford, M. and G. Koepke, "Design, evaluation, and use susceptibility/vulnerability measurements," U.S. Nat. Bur. Stand. Technol. Tech. Note 1092, 1986.

11. Herlem, Y., A. Shaffarand, P. Pelissou, and L. Trougnou, "Oversized cavity limits assessments by numerical solution," Proc. CEM'08, Paris, France, 2008.

12. Fiachetti, C. and F. Hoeppe, "Measurement of the shielding effectiveness of myriad satellite structure," Proc. ESA Workshop on Aerospace EMC, Florence, Italy, 2009.

13. Kempf, D. R., "EMV testing of aircraft: A comparison of the mode-stirred and standard methods," IEEE Electromagn. Compat. Int. Symp., 185-189, Aug. 1996.

14. Freyer, G. J. and M. O. Hatfield, "Aircraft test applications of reverberation chambers," IEEE Electromagn. Compat. Int. Symp., 491-496, Aug. 1994.
doi:10.1109/TEMC.2005.851729

15. Panaretos, T., C. Balanis, and C. Birtcher, "HIRF penetration into simplified fuselage using a reverberation chamber approach," IEEE Trans. Electromagn. Compat., Vol. 47, 667-670, Aug. 2005.
doi:10.1109/TEMC.2005.847392

16. Panaretos, A., C. Balanis, and C. Birtcher, "Shielding effectiveness and statistical analysis of cylindrical scale fuselage model," IEEE Trans. Electromagn. Compat., Vol. 42, 361-366, May 2005.
doi:10.1049/PBEW050E

17. Vaughn, R. and J. Anderson, Channels, Propagation, and Antennas for Mobile Communications, IEE Press, London, 2003.

18. Walton, E., J. Young, J. Moore, and K. Davis, "EM propagation in jet engine turbines," Annual Meeting Symposium of the Antenna Meas. Tech. Assoc., 2006.

19. Gruden, M., M. Jobs, and A. Rydberg, "Measurements and simulations of wave propagation for wireless sensor networks in jet engine turbines," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 2011.
doi:10.1109/15.536065

20. Corona, P., G. Ferrara, and M. Migliaccio, "Reverberation chambers as sources of stochastic electromagnetic fields," IEEE Trans. Electromagn. Compat., Vol. 38, No. 3, 348-356, Aug. 1996.
doi:10.1109/15.709418

21. Hill, D., "Plane wave integral representation for fields in reverberation chambers," IEEE Trans. Electromagn. Compat., Vol. 40, 209-217, 1998.
doi:10.1103/PhysRevE.48.4716

22. Price, R. H., H. T. Davis, and E. P. Wennas, "Determination of the statistical distribution of electromagnetic-field amplitudes in complex cavities," Phys. Rev. E, Vol. 48, No. 6, 4716-4729, Dec. 1993.

23. Papoulis, A., Probability, Random Variables, and Stochastic Processes, McGraw-Hill Book Co., 1965.