Vol. 127
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-04-16
Efficient Model Order Reduction for FEM Analysis of Waveguide Structures and Resonators
By
Progress In Electromagnetics Research, Vol. 127, 277-295, 2012
Abstract
An efficient model order reduction method for three-dimensional Finite Element Method (FEM) analysis of waveguide structures is proposed. The method is based on the Efficient Nodal Order Reduction (ENOR) algorithm for creating macro-elements in cascaded subdomains. The resulting macro-elements are represented by very compact submatrices, leading to significant reduction of the overall number of unknowns. The efficiency of the model order reduction is enhanced by projecting fields at the boundaries of macro-elements onto a subspace spanned by a few low-order waveguide modes. The combination of these two techniques results in considerable saving in overall computational time and memory requirement. An additional advantage of the presented method is that the reduced-order system matrix remains frequency-independent, which allows for very fast frequency sweeping and efficient calculation of resonant frequencies. Several numerical examples for driven and eigenvalue problems demonstrate the performance of the proposed methodology in terms of accuracy, memory usage and simulation time.
Citation
Grzegorz Fotyga, Krzysztof Nyka, and Michal Mrozowski, "Efficient Model Order Reduction for FEM Analysis of Waveguide Structures and Resonators," Progress In Electromagnetics Research, Vol. 127, 277-295, 2012.
doi:10.2528/PIER12021609
References

1. Celik, M. and A. C. Cangellaris, "Simulation of dispersive multiconductor transmission lines by Pade approximation via the Lanczos process ," IEEE Trans. Microwave Theory Tech., Vol. 44, 2525-2535, Dec. 1996.
doi:10.1109/22.554593

2. Odabasioglu, A., M. Celik, and L. T. Pileggi, "PRIMA: Passive reduced order interconnect macromodeling algorithm," IEEE Trans. Computer-Aided Design, Vol. 17, 645-653, Aug. 1998.
doi:10.1109/43.712097

3. Sheehan, B. N., "ENOR: Model order reduction of RLC circuits using nodal equations for efficient factorization," Proc. IEEE 36th Design Autom. Conf., 17-21, Jun. 1999.

4. Rewienski, M. and J. White, "A trajectory piecewise-linear approach to model order reduction and fast simulation of nonlinear circuits and micromachined devices," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 22, No. 2, 155-170, Feb. 2003.
doi:10.1109/TCAD.2002.806601

5. Cangellaris, A. C., M. Celik, S. Pasha, and L. Zhao, "Electromagnetic model order reduction for system-level modeling," IEEE Trans. Microwave Theory Tech., Vol. 7, 840-850, Jun. 1999.
doi:10.1109/22.769317

6. Denecker, B., F. Olyslager, L. Knockaert, and D. De Zutter, "Automatic generation of subdomain models in 2-D FDTD using reduced order modeling," IEEE Microwave Guided Wave Lett., Vol. 10, 301-303, Aug. 2000.
doi:10.1109/75.862221

7. Kulas, L. and M. Mrozowski, "Reduced-order models in FDTD," IEEE Microw. Wireless Comp. Lett., Vol. 11, No. 10, 422-424, Oct. 2001.
doi:10.1109/7260.959317

8. Kulas, L. and M. Mrozowski, "Reduced order models of refined Yee's cells," IEEE Microw. Wireless Comp. Lett., Vol. 13, 164-166, Apr. 2003.
doi:10.1109/LMWC.2003.811068

9. Zhu, Y. and A. C. Cangellaris, "Macro-elements for efficient FEM simulation of small geometric features in waveguide components," IEEE Trans. Microwave Theory Tech., Vol. 48, 2254-2260, Dec. 2000.
doi:10.1109/22.898972

10. Fotyga, G., K. Nyka, and L. Kulas, "A new type of macro-elements for efficient two-dimensional FEM analysis," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 270-273, 2011.
doi:10.1109/LAWP.2011.2134063

11. Lee, S.-H. and J. M. Jin, "Fast reduced-order finite-element modeling of lossy thin wires using lumped impedance elements," IEEE Trans. Adv. Packag., Vol. 33, No. 1, 212-218, Feb. 2010.
doi:10.1109/TADVP.2009.2015958

12. Kulas, L. and M. Mrozowski, "Accelerated analysis of resonators by a combined domain decomposition - Model order reduction approach ," 34th European Microwave Conference, Vol. 2, 585-588, Oct. 14, 2004.

13. De la Rubia, V. and J. Zapata, "Microwave circuit design by means of direct decomposition in the finite-element method," IEEE Trans. Microwave Theory Tech., Vol. 55, No. 7, 1520-1530, Jul. 2007.
doi:10.1109/TMTT.2007.900307

14. Kulas, L. and M. Mrozowski, "Macromodels in the frequency domain analysis of microwave resonators," IEEE Microw. Wireless Comp. Lett., Vol. 14, No. 3, 94-96, Mar. 2004.
doi:10.1109/LMWC.2004.825165

15. Kulas, L., P. Kowalczyk, and M. Mrozowski, "A novel modal technique for time and frequency domain analysis of waveguide components," IEEE Microw. Wireless Comp. Lett., Vol. 21, No. 1, 7-9, Jan. 2011.
doi:10.1109/LMWC.2010.2089439

16. Remis, R. F., "An efficient model-order reduction approach to low-frequency transmission line modeling," Progress In Electromagnetics Research, Vol. 101, 139-155, 2010.
doi:10.2528/PIER09123006

17. Zhang, Z. and Y. H. Lee, "An automatic model order reduction of a UWB antenna system," Progress In Electromagnetics Research, Vol. 104, 267-282, 2010.

18. Song, Z., D. Su, F. Duval, and A. Louis, "Model order reduction for PEEC modeling based on moment matching," Progress In Electromagnetics Research, Vol. 114, 285-299, 2011.

19. Rubio, J., J. Arroyo, and J. Zapata, "Analysis of passive microwave circuits by using hybrid 2-D and 3-D finite-element mode-matching method," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 9, 1746-1749, Sep. 1999.
doi:10.1109/22.788618

20. Mrozowski, M., "A hybrid PEE-FDTD algorithm for accelerated time domain analysis of electromagnetic waves in shielded structures," IEEE Microwave Guided Wave Lett., Vol. 4, No. 10, 323-325, Oct. 1994.
doi:10.1109/75.324704

21. Jin, J. M., The Finite Element Method in Electromagnetics, 2nd edition, IEEE Press, New York, 2002.

22. Pelosi, G., R. Coccioli, and S. Selleri, Quick Finite Elements for Electromagnetic Waves, 2nd Edition, Artech House Antenna Library, 2009.

23. Ingelstrom, P., "A new set of H(curl)-conforming hierarchical basis functions for tetrahedral meshes ," IEEE Trans. Microwave Theory Tech., Vol. 54, No. 1, 106-114, Jan. 2006.
doi:10.1109/TMTT.2005.860295

24. Kowalczyk, P., L. Kulas, and M. Mrozowski, "Analysis of microstructured optical fibers using compact macromodels," Opt. Express, Vol. 19, No. 20, 19354-19364, 2011.
doi:10.1364/OE.19.019354

25. Lou, Z. and J. M. Jin, "An accurate waveguide port boundary condition for the time-domain finite-element method," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 9, 3014-3023, Sep. 2005.
doi:10.1109/TMTT.2005.854223

26. Stamatopoulos, I. D. and I. D. Robertson, "Rigorous network representation of microwave components by the use of indirect mode matching," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 3, 935-944, Mar. 2004.
doi:10.1109/TMTT.2004.823597

27. Zhu, Y. and A. C. Cangellaris, Multigrid Finite Element Methods for Electromagnetic Field Modeling, Wiley, New York, 2006.

28. ANSYS HFSS, , "3D full-wave electromagnetic field simulation," http://www.anasoft.com/products/hf/hfss/overview.cfm.

29. Alessandri, F., M. Chiodetti, A. Giugliarelli, D. Maiarelli, G. Martirano, D. Schmitt, L. Vanni, and F. Vitulli, "The electric feld integral-equation method for the analysis and design of a class of rectangular cavity flters loaded by dielectric and metallic cylindrical pucks," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 8, 1790-1797, Aug. 2004.
doi:10.1109/TMTT.2004.831583