Vol. 30
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-04-02
The Extension of the Maxwell Garnett Mixing Rule for Dielectric Composites with Nonuniform Orientation of Ellipsoidal Inclusions
By
Progress In Electromagnetics Research Letters, Vol. 30, 173-184, 2012
Abstract
This paper presents the extension of the Maxwell Garnett effective medium model accounting for an arbitrary orientation of ellipsoidal inclusions. The proposed model is shown to be asymptotically convergent to the Maxwell Garnett mixing rule for a homogenous distribution of inclusions. Subsequently, a special case of a thin composite layer with a two-dimensional distribution of inclusions is considered and a simplified Maxwell Garnett formula is formally derived. The proposed model is validated against the alternative theoretical calculations and measurements data.
Citation
Bartlomiej Salski, "The Extension of the Maxwell Garnett Mixing Rule for Dielectric Composites with Nonuniform Orientation of Ellipsoidal Inclusions," Progress In Electromagnetics Research Letters, Vol. 30, 173-184, 2012.
doi:10.2528/PIERL12020202
References

1. De Rosa, I. M., R. Mancinelli, F. Sarasini, M. S. Sarto, and A. Tamburrano, "Electromagnetic design and realization of innovative fiber-reinforced broad-band absorbing screens," IEEE Trans. Electromagn. Compat., Vol. 51, No. 3, 700-707, Aug. 2009.
doi:10.1109/TEMC.2009.2018125

2. De Rosa, I. M., A. Dinescu, F. Sarasini, M. S. Sarto, and A. Tamburrano, "Effect of short carbon fibers and MWCNTs on microwave absorbing properties of polyester composites containing nickel-coated carbon fibers," Composites Science and Technology, Vol. 70, 102-109, 2010.
doi:10.1016/j.compscitech.2009.09.011

3. Wada, Y., N. Asano, K. Sakai, and S. Yoshikado, "Preparation and evaluation of composite electromagnetic wave absorbers made of fine aluminum particles dispersed in polystyrene medium," Progress In Electromagnetics Research, Vol. 4, No. 8, 838-845, 2008.

4. Na, X., J. Qingjie, Z. Chongguang, W. Chenglong, and L. Yuanyuan, "Study on dispersion and electrical property of multi-walled carbon nanotubes/low-density polyethylene nanocomposites," Materials and Design, Vol. 31, 1676-1683, 2010.
doi:10.1016/j.matdes.2009.02.032

5. Al-Saleh, M. H. and U. Sundararaj, "Electromagnetic interference shielding mechanisms of CNT/polymer composites," Carbon, Vol. 47, 1738-1746, 2009.
doi:10.1016/j.carbon.2009.02.030

6. Youngs, I. J., "Exploring the universal nature of electrical percolation exponents by genetic algorithm fitting with general effective medium theory," Journal of Physics D: Applied Physics, Vol. 35, 3127-3137, 2002.
doi:10.1088/0022-3727/35/23/314

7. Maxwell Garnett, J. C., "Colours in metal glasses and metal films," Philos. Trans. R. Soc. London, Sect. A, Vol. 3, 385-420, 1904.
doi:10.1098/rsta.1904.0024

8. Sihvola, A. H. and J. A. Kong, "Effective permittivity of dielectric mixtures," IEEE Trans. on Geoscience and Remote Sensing, Vol. 26, No. 4, 420-429, 1988.
doi:10.1109/36.3045

9. Koledintseva, M. Y., J. Wu, J. Zhang, J. L. Drewniak, and K. N. Rozanow, "Representation of permittivity for multiphase dielectric mixtures in FDTD modeling," IEEE International Symp. on Electromagnetic Compatibility, EMC 2004, Vol. 1, 309-314, 2004.

10. Uberall, H., B. F. Howell, and E. L. Diamond, "Effective medium theory and the attenuation of graphite fiber composites," Journal of Physics, Vol. 73, No. 7, 3441-3445, 1993.

11. Wu, J. and D. S. McLachlan, "Percolation exponents and thresholds obtained from the nearly ideal continuum percolation system graphite-boron nitride," Physical Review B, Vol. 56, No. 3, 1236-1248, 1997.
doi:10.1103/PhysRevB.56.1236

12. Koledintseva, M. Y., J. L. Drewniak, and R. DuBroff, "Modeling of shielding composite materials and structures for microwave frequencies," Progress In Electromagnetics Research B, Vol. 15, 197-215, 2009.
doi:10.2528/PIERB09050410

13. Jylha, L. and A. Sihvola, "Equation for the effective permittivity of particle-filled composites for material design applications," Journal of Physics D: Applied Physics, Vol. 40, 4966-4973, 2007.
doi:10.1088/0022-3727/40/16/032

14. Li, Y., C. Chen, S. Zhang, Y. Ni, and J. Huang, "Electrical conductivity and electromagnetic interference shielding characteristics of multiwalled carbon nanotube filled polyacrylate composite films," Applied Surface Science, Vol. 254, 5766-5771, 2008.
doi:10.1016/j.apsusc.2008.03.077

15. Landau, L. D., L. P. Pitaevskii, and E. M. Lifshitz, Electrodynamics of Continuous Media, 2nd Ed., Elsevier Butterworth-Heinemann, 1984.

16. Koledintseva, M., P. C. Rawa, R. DuBroff, J. Drewniak, K. Rozanov, and B. Archambeault, "Engineering of composite media for shields at microwave frequencies," IEEE International Symp. on Electromagnetic Compatibility, EMC 2005, Vol. 1, 169-174, 2005.
doi:10.1109/ISEMC.2005.1513494

17. Koledintseva, M. Y., R. DuBroff, and R. W. Schwartz, "Maxwell Garnett rule for dielectric mixtures with statistically distributed orientations of inclusions," Progress In Electromagnetic Research, Vol. 99, 131-148, 2009.
doi:10.2528/PIER09091605

18. Sihvola, A. and I. V. Lindell, "Remote sensing of random media with ellipsoidal inhomogeneities," Geoscience and Remote Sensing Symposium, IGARSS'89, Vol. 2, 929-931, 2003.

19. Avelin, J., Polarizability analysis of canonical dielectric and bianisotropic scatterers, Ph.D. dissertation, Helsinki University of Technology, 2003.