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THE EXTENSION OF THE MAXWELL GARNETT MIX-
ING RULE FOR DIELECTRIC COMPOSITES WITH
NONUNIFORM ORIENTATION OF ELLIPSOIDAL IN-
CLUSIONS

B. Salski*
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Abstract—This paper presents the extension of the Maxwell Garnett
effective medium model accounting for an arbitrary orientation
of ellipsoidal inclusions. The proposed model is shown to be
asymptotically convergent to the Maxwell Garnett mixing rule for a
homogenous distribution of inclusions. Subsequently, a special case of a
thin composite layer with a two-dimensional distribution of inclusions
is considered and a simplified Maxwell Garnett formula is formally
derived. The proposed model is validated against the alternative
theoretical calculations and measurements data.

1. INTRODUCTION

Recently, approximate modeling of macroscopic electromagnetic
properties of mixtures has gained an increasing interest, mainly
due to the growing applicability of polymer composites reinforced
with conductive inclusions, such as carbon fibers or nanotubes. A
large market for such composites can be found in manufacturing
of electromagnetic shielding and absorbing materials exhibiting a
competitive performance when compared to classical panels, like heavy
metallic ones.

Host materials in such inhomogeneous compositions are usually
made of polymers possessing advantageous properties, like low density,
low permittivity, negligible losses, good mechanical processability and
many others. As a popular example, epoxy resin [1], polyester [2],
polystyrene [3], polyethylene [4], or polypropylene [5] can be recalled.

In many applications, inclusions dispersed in the polymer are
made of conductive carbon-based fillers, such as carbon black (CB)
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powders, carbon fibers (CF) or carbon nanotubes (CNT). The
advantage of the fibers and even more of the nanotubes is in their high
aspect ratio and relatively large electrical conductivity, so that a small
amount of such inclusions, even much below a percolation threshold [6],
leads to a substantial change of electrical properties of a composite
without a significant increase of an overall weight.

However, engineering of electromagnetic shields and absorbers
based on carbon-reinforced composites requires quantitative knowledge
of their electromagnetic properties, if one does not want to rely
solely on costly cut-and-try experiments. The most straightforward
way to approach the issue is to apply one of the known numerical
electromagnetic techniques, like the finite element method or the
finite difference time domain one. Unfortunately, brute-force
electromagnetic modeling that represents microscopic details of a
mixture is still prohibitively time-consuming to be applied in a
real design cycle, mainly due to an extremely large ratio between
an operating wavelength (e.g., 30 mm in X-band) and the smallest
dimensions of carbon inclusions (diameters at the nanometer scale). In
electromagnetic modeling, spatial discretization is usually determined
by the operating wavelength, with practical recommendations of 10–
20 spatial cells per wavelength that suppress the dominant numerical
dispersion errors to 1–0.25%, respectively.

In the case of mixtures, discretization would need to be refined so
as to appropriately capture tiny geometrical details of the inclusions.
For the considered example, the refinement would be by a factor
of roughly 1.5 mm/15 nm = 105, increasing memory requirements
by ca. 1015 and computing time by 1020. This unfavorable
scaling naturally stimulates a search for the effective (quasi-static)
representation of electromagnetic properties of such composites.

There is a variety of mathematical models that aim to represent
effective electromagnetic properties of mixtures. Most of them exhibit
very stringent limitations that must be satisfied to achieve a reliable
solution. One of the simplest approximations is known as the Maxwell
Garnett mixing rule [7]:

εeff = εb +

1
3fi (εi − εb)

3∑
k=1

εb
εb+Nk(εi−εb)

1− 1
3fi (εi − εb)

3∑
k=1

Nk
εb+Nk(εi−εb)

(1)

where εb = εεb,r denotes permittivity of a host material, εi = εεi,r is
bulk permittivity of ellipsoidal inclusions, fi is the volume fraction of
inclusions, and Nk stands for so-called depolarization factors that can
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be calculated from the following integral [8, 9]:

Nk = 0.5cxcycz

∞∫

0

dr
(
r + c2

k

) √
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x)
(
r + c2

y

)
(r + c2

z)
(2)

where k = x, y, z denotes Cartesian coordinates, and cx, cy, cz stand
for semi-axes of an ellipsoidal inclusion.

There are also other widely recognized models representing
effective permittivity of mixtures, such as Bruggeman [10], McLachlan
[6, 11, 12], or differential mixing rule [13] methods. However, the
advantage of the Maxwell Garnett model is that, for a given volume
fraction of inclusions fi, it explicitly provides effective permittivity of a
mixture with no need of iterative calculations. However, there is a rigid
requirement that, in the case of conducting inclusions, a mixture is far
below the percolation threshold, understood as a transition between
isolating and conducting properties [6, 12]. If inclusions are in the
shape of spheroids with a large aspect ratio a = l/d À 1, where
l is the length and d is the diameter of a spheroid, the percolation
threshold is usually approximated as pc ∼ 1/a [12]. It indicates that,
with the increasing aspect ratio, the percolation threshold decreases
and, in consequence, special attention must be paid whether the
Maxwell Garnett model still provides a reliable solution. Another
inherent limitation of the Maxwell Garnett formula is a quasi-static
approximation requiring a distance between inclusions to be much
smaller than the operating wavelength [8]. That requirement is usually
satisfied in the microwave spectrum region, if one considers polymer
composites reinforced with elongated carbon inclusions.

The Maxwell Garnett mixing rule, in one of its common versions,
represents effective permittivity of a composite with randomly oriented
ellipsoidal inclusions uniformly dispersed in a host material. Such

Figure 1. A single inclined spheroidal inclusion.
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effective permittivity becomes isotropic, even though it contains
strongly anisotropic ellipsoidal inclusions. However, it can happen that
— due to some bias occurring in a mixing process — the orientation
of inclusions is not purely random, contributing to anisotropy of the
mixture. Let us consider, for instance, a very thin composite layer
reinforced with carbon fibers, such as paint composites [14] or thin
shielding screens. Due to a very small thickness of the processed
composite, with respect to the fibers’ average length, the orientation
of those fibers is mostly two-dimensional. Referring to Figure 1, if
a thin composite is laid in the xy-plane (θ = 90◦), carbon fibers are
uniformly distributed within the range of ϕ = 0, . . . , 360◦. However,
due to the symmetry of the spheroidal inclusions only the half of space
needs to be considered, that is, ϕ = 0, . . . , 180◦. Consequently, such
a composite exhibits uniaxial anisotropy with the properties along the
z-axis being different from those in the xy-plane.

In order to represent effective permittivity of such anisotropic
composite using the Maxwell Garnett approximation, a formula taking
into account the orientation of inclusions has to be derived. In general,
the problem of an arbitrary distribution of ellipsoidal inclusions was
addressed many years ago [8, 15]. However, the authors did not proceed
to solutions for any specific non-uniform distribution of the inclusions’
orientation. Formally, such specific solutions could be derived based
on Equation (18) in [8]. Yet, most authors do not follow this path and
continue to use the “intuitive” coefficient of 1.5 [16, 1].

Lately, the paper approaching the Maxwell Garnett approxima-
tion of a dielectric mixture with statistically distributed orientation
of inclusions has been published [17]. The authors start their inves-
tigation representing polarizability of a single ellipsoidal inclusion as
a diagonal tensor that is further rotated by a given set of spherical
angles ϕ and θ (see Figure 1). The obtained non-diagonal tensor is,
subsequently, applied to represent effective permittivity of a compos-
ite reinforced with several arbitrarily oriented inclusions that occupy
a particular volume fraction. Although the method introduced in [17]
addresses the issue in an interesting way, the paper lacks computa-
tional examples validating the proposed method. However, a simple
test shows that the solution as of [17] does not asymptotically con-
verge to the well-established isotropic solution of the Maxwell Garnett
mixing rule. Therefore, in this paper the alternative solution of the
Maxwell Garnett formula for dielectric composites with the arbitrary
non-uniform orientation of ellipsoidal inclusions will be derived. Ad-
ditionally, the already mentioned “intuitive” coefficient of 1.5 will be
verified.

In the next Section, the Maxwell Garnett effective permittivity
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formula for the given distribution of inclusions orientations will be
formally derived and validated. Afterwards, that formula will be used
to establish effective permittivity of a composite with a 2D distribution
of inclusions.

2. FORMULA DERIVATION

The solution of the Laplace’s equation [18, 19], derived in an ellipsoidal
coordinate system for a single ellipsoid buried in a homogeneous
dielectric host and aligned with one of Cartesian coordinates leads
to a diagonal polarizability tensor. The diagonal coefficients of that
tensor are given as (see Equation (10) in [8]):

αk = vi
εb (εi − εb)

εb + Nk (εi − εb)
(3)

where k = x, y, z denotes Cartesian coordinates and vi stands for an
ellipsoid’s volume.

The dipole moment of such a single ellipsoidal scattering obstacle
may be represented by the following formula:

pk = αkEe,k = vi (εi − εb) Ei,k (4)
where Ee and Ei stand, respectively, for external and internal electric
field components.

In a more general dyadic notation, polarizability can be
represented in the following form (see Equation (45) in [19]):

↔
α = viεb (εi − εb)

[
εb

↔
I +

↔
L (εi − εb)

]−1
(5)

where L is a depolarization dyadic which, in the case of an inclusion
aligned with the Cartesian coordinates, has the following diagonal form
(see Equation (46) in [19]):

↔
L =

[
Nx 0 0
0 Ny 0
0 0 Nz

]
(6)

Subsequently, the dipole moment of a single inclusion obtained
from Equation (5) can be applied to evaluate effective permittivity
of a composite with a given number n of such inclined ellipsoidal
inclusions per unit volume. For that purpose, let us introduce an
electric displacement vector written as:

~D = ↔
εeff

~Ee = εb
~Ee + ~P (7)

where
~P =

∑
m

nm~pm (8)
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is the polarization density and an index m iterates over all types
(orientations) of inclusions dispersed in a unit volume of a composite.

In a rough approximation of the dipole moment tensor of a single
inclusion dispersed in a mixture (see Equation (4)), it can be assumed
that each inclusion is illuminated with the already introduced external
electric field Ee. However, a more precise solution should account for
the contribution of a field scattered from neighboring inclusions to a
local field illuminating each inclusion in a mixture. Consequently, the
local field EL can be written in the following form [8]:

~EL = ~Ee +
1
εb

↔
L~P (9)

leading to the modified polarizability (compare with Equation (4)):

~p = ↔
α ~EL (10)

Introducing Equations (9), (10) to Equations (7), (8) with an
additional assumption of a bi-phased composition, the following
formula for effective permittivity of a mixture can be derived:

↔
εeff = εb

↔
I + n

↔
α

[
↔
I − 1

εb
n
↔
α
↔
L

]−1

(11)

where I represents a unit tensor.
Extension to a multiphase mixture requires slight modification of

Equation (11):

↔
εeff = εb

↔
I +

∑
m

nm
↔
αm

[
↔
I − 1

εb

∑
m

nm
↔
αm

↔
Lm

]
(12)

In this Section, effective permittivity of a multi-phase mixture
with ellipsoidal inclusions has been formally derived. In Section 3,
that solution will be applied to account for a predefined distribution
of inclusions.

3. PREDEFINED DISTRIBUTION OF INCLUSIONS

Equation (12) enables the consideration of a statistically distributed
orientation of inclusions occupying, in total, a specified volume fraction
fi = nvi, where n is the number of inclusions per unit volume. For
that purpose, let the distribution of inclusions be given as follows:

nm = p (θm, ϕm) sin (θm) n (13)
with the following scaling condition imposed:

2π∑

ϕ=0

π∑

θ=0

p (θ, ϕ) sin (θ) = 1 (14)
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where sin(θ) is a Jacobian determinant accounting for a rectangular-
to-spherical coordinate systems transformation.

Next, for each orientation of inclusions (θm, ϕm), both the
polarizability tensor (see Equation (10)) and the depolarization dyadic
(see Equation (6)) must be rotated and, subsequently, applied in
Equation (12). Let us assume, hereafter, that the alignment of
inclusions before rotation is along the z-axis (θ = 0◦ in Equation (1))
and that the inclusions are in the shape of spheroids, so the two of
three semi-axes are equal cx = cy. Thus, taking advantage of the
formulae applied in [17, Equations (11), (12)], the polarizability of a
single inclined spheroid can be represented in the following way:

↔
α

new
i (θ, ϕ) = αx

↔
I + (αz − αx)

↔
W (15)

where

↔
W=




cos2(φ)sin2(θ) cos(φ) sin(φ) sin2(θ) cos(φ)cos(θ)sin(θ)
cos(φ)sin(φ)sin2(θ) sin2(φ)sin2(θ) sin(φ)cos(θ)sin(θ)
cos(φ) cos(θ) sin(θ) sin(φ) cos(θ)sin(θ) cos2(θ)


 (16)

is a rotation matrix.
In the next Section, computational tests of Equation (12),

supplemented with the consideration given in this Section, will be
undertaken to validate the formula against theoretical computations
and measurements. The issue of the intuitive coefficient of 1.5,
introduced in [16], referring to the 2D orientation of inclusions within
a dielectric composite, will also be addressed.

4. COMPUTATIONAL TESTS

In the first test, effective permittivity of a mixture with randomly
oriented inclusions will be computed using Equation (12) and,
afterwards, compared against the well-known isotropic Maxwell
Garnett formula (see Equation (1)). In order to focus on a practical
case, the results published in [1] will be considered, where an absorbing
screen manufactured in an epoxy resin reinforced with carbon fibers
was investigated. Measurements published in [1] show that complex
permittivity of epoxy is almost non-dispersive within X-band and
equals ca. εeff = 3.045 − j0.051 (see Figure 3 in [1]). After [1],
bulk conductivity of carbon fibers is expected to amount to σf =
40 kS/m, while their aspect ratio is equal to a = length/diameter =
4mm/7µm ∼= 571.43. Let us also assume that a total volume
fraction amounts to fi = 0.028% (as given in Table I in [1]). In the
case of spheroidal inclusions aligned with the Cartesian coordinates,
depolarization factors as given by Equation (2) amount to Nx = Ny

∼=
0.5 and Nz

∼= 1.944e-5.
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(a) (b)

Figure 2. A Maxwell Garnett representation of effective permittivity
of an isotropic mixture of carbon fibers dispersed in an epoxy resin.
(a) Complex effective permittivity obtained with Equation (1). (b) A
relative error of diagonal elements computation with Equation (12) as
compared to Equation (1).

Figure 2(a) shows real and imaginary components of isotropic
effective permittivity obtained with Equation (1) for the given
composite. Next, the same mixture was computed iteratively with
Equation (12). Figure 2(b) plots the relative error of diagonal
elements computation, as compared to the reference results shown in
Figure 2(a). In numerical computations of the effective permittivity
tensor as given by Equation (12), an angular discretization step of 1◦
was taken for both ϕ and θ variables. Additionally, it is assumed that
the probability density p (θ, ϕ) is constant and normalized according
to Equation (14). As shown in Figure 2(b), the error of both real
and imaginary parts of diagonal elements computation is on the level
below 0.3%. Regarding non-diagonal elements of the tensor given by
Equation (12), their values reach a negligible level of ca. 1e-17. The
choice of the angular discretization step smaller than 1◦ yields even
better accuracy level but at the cost of higher computational effort.

However, comparing Figure 2(a) with the measurement results
published in [1, see Figure 7], it can be clearly seen that those results
are different. Apparently, as pointed out in [1], the reason is that
the processed composite layer is very thin, as compared to the average
length of the applied carbon fibers. Thus, it can be expected that their
orientation is mostly two-dimensional within the layer. To account
for that, the authors of [1], after [16] applied the already mentioned
intuitive coefficient of 1.5 rescaling the effective permittivity tensor in
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the following way:

↔
εeff =

[1.5εeff 0 0
0 1.5εeff 0
0 0 εb

]
(17)

where the scalar εeff corresponds to the isotropic solution calculated
with Equation (1).

Let us validate those premises using Equation (12). The
probability density function p (θ, ϕ) is assumed to have a linear
distribution in the xy-plane (θ = 90◦) and within the range ϕ =
0◦, . . . , 360◦ with the angular step of dϕ = 1◦. It refers to the case
of effective permittivity of a composite with carbon fibers randomly
dispersed in the xy-plane.

Figure 3 shows the calculated complex permittivity (red
line) compared with the measurement results (green line) taken
from [1, Figure 7]. Additionally, effective permittivity calculated
with the intuitive tensor given by Equation (17) (as taken
from [1, Equation (6)]) is also shown (black dashed line). At first,
it can be noticed that the way the coefficient 1.5 is applied does
not lead to a correct representation of effective permittivity of the
composite with 2D oriented inclusions. A closer insight into the results
shown in Figure 3 shows that, excluding a bump obtained in the
measurements around 9.5 GHz, the plot of a real part of Equation (17)
is shifted up by ca. 1.495 while an imaginary part is well fitted when
compared to the measurement data. On the contrary, the iterative
solution of Equation (12) (red line) is much better fitted to the
measurements (green line). However, if xx - and yy-diagonal elements

Figure 3. A Maxwell Garnett
representation of effective permit-
tivity of an epoxy resin with 2D-
oriented carbon fibers.

Figure 4. A relative error
of complex effective permittivity
of 2D-oriented carbon fibers dis-
persed in an epoxy resin com-
puted with Equation (18) and
compared to Equation (12).
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in Equation (17), will be modified as follows:

εeff x ,y = εb + 1.5

1
3fi (εi − εb)

3∑
k=1

εb
εb+Nk(εi−εb)

1− 1
3fi (εi − εb)

3∑
k=1

Nk
εb+Nk(εi−εb)

(18)

the obtained solution will fit exactly the iterative solution of
Equation (12) (red line). For that reason, the plot of Equation (18) is
omitted in Figure 3.

Unlike in Equation (17), only the “mixture part” is rescaled
by one 1.5 in Equation (18), what seems to be reasonable, since it
can be expected that the contribution of host’s permittivity εb to
total effective permittivity of a composite εeff should not depend on
the specific alignment of inclusions. Moreover, if one considers an
asymptotic problem when εi = εb, Equation (17) erroneously yields
εeff x ,y = 1.5εb suggesting that the solution of the Maxwell Garnett
formula is not asymptotically convergent to a single-phased case.

Figure 4 presents a relative error of effective permittivity
computed with Equation (18) against the iterative solution of
Equation (12). It can be seen that the validity of the newly
defined simplified and non-iterative formula applicable for 2D-oriented
ellipsoidal inclusions buried in a host dielectric has been proven.

The author carried out several tests for different composite
definitions with the 2D orientation of inclusions and, in all cases,
Equation (18) fits precisely the corresponding results generated with
an iterative solution of Equation (12).

Concluding, it has been proven that Equation (12), together with
Equations (13)–(16), provide the correct representation of effective
permittivity of a composite with a predefined distribution of ellipsoidal
inclusions’ orientations. Additionally, a new simplified formula
for effective permittivity of a composite with a 2D distribution of
inclusions has been given (see Equation (18)).

5. CONCLUSION

To the best of author’s knowledge, this is the first formally and
experimentally validated extension of the Maxwell Garnett mixing
rule accounting for an arbitrary statistical orientation of ellipsoidal
inclusions. In addition, a simplified formula dedicated to the modeling
of thin composite layers with two-dimensional distribution of inclusions
has been derived. The author believes that those ready-to-use formulae
are very useful to the modeling of dilute mixtures with a process-
dependent inclusions’ orientation.
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