Vol. 126
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-04-02
Efficient Multiscale Finite Difference Frequency Domain Analysis Using Multiple Macromodels with Compressed Boundaries
By
Progress In Electromagnetics Research, Vol. 126, 463-479, 2012
Abstract
In this paper, a novel idea of reducing numerical complexity of finite difference method using multiple macromodels is presented. The efficiency of the macromodeling technique depends on the number of ports of a model. To enhance the efficiency of the algorithm the field samples at the boundary of the macromodel are replaced with amplitudes of discretized Legendre polynomials. Redefining the problem in such manner results in significant reduction of the analysis time. The validity and efficiency of the proposed procedure are demonstrated by performing the analysis of two microwave filters requiring a high density mesh.
Citation
Jakub Podwalski, Piotr Kowalczyk, and Michal Mrozowski, "Efficient Multiscale Finite Difference Frequency Domain Analysis Using Multiple Macromodels with Compressed Boundaries," Progress In Electromagnetics Research, Vol. 126, 463-479, 2012.
doi:10.2528/PIER12012008
References

1. Taflove, A. and K. R. Umashankar, "The finite-difference time-domain method for numerical modeling of electromagnetic wave interactions with arbitrary structures," Progress In Electromagnetics Research, Vol. 02, 287-373, 1990.

2. Xu, F., Y. Zhang, W. Hong, K. Wu, and T. J. Cui, "Finite-difference frequency-domain algorithm for modeling guided-wave properties ofsubstrate integrated waveguide," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 11, 2221-2227, Nov. 2003.

3. http://www.cst.com/.

4. http://www.qwed.com.pl/.

5. Zheng, G., B. Z. Wang, H. Li, X. F. Liu, and S. Ding, "Analysis of finite periodic dielectric gratings by the finite-difference frequency-domain method with the sub-entire-domain basis functions and wavelets," Progress In Electromagnetics Research, Vol. 99, 453-463, 2009.
doi:10.2528/PIER09111502

6. Kusiek, A. and J. Mazur, "Analysis of scattering from arbitrary configuration of cylindrical objects using hybrid finite-difference mode-matching method," Progress In Electromagnetics Research, Vol. 97, 105-127, 2009.
doi:10.2528/PIER09072804

7. Chang, H. W., W. C. Cheng, and S. M. Lu, "Layer-mode transparent boundary condition for the hybrid fd-fd method," Progress In Electromagnetics Research, Vol. 94, 175-195, 2009.
doi:10.2528/PIER09061606

8. Chang, H. W., Y. H. Wu, and W. C. Cheng, "Hybrid fdfd analysis of crossing waveguides by exploiting both the plus and the cross structural symmetry," Progress In Electromagnetics Research, Vol. 103, 217-240, 2010.
doi:10.2528/PIER10030202

9. Kulas, L. and M. Mrozowski, "Multilevel model order reduction," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 4, 165-167, Apr. 2004.
doi:10.1109/LMWC.2004.827113

10. Kulas, L. and M. Mrozowski, "Reduced-order models in FDTD," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 10, 422-424, Oct. 2001.
doi:10.1109/7260.959317

11. Kulas, L. and M. Mrozowski, "Reduced order models of refined Yee's cells," IEEE Microwave and Wireless Components Letters, Vol. 13, No. 4, 164-166, Apr. 2003.
doi:10.1109/LMWC.2003.811068

12. Kulas, L. and M. Mrozowski, "A fast high-resolution 3-D finite-difference time-domain scheme with macromodels," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 9, 2330-2335, Sept. 2004.
doi:10.1109/TMTT.2004.834585

13. Kulas, L. and M. Mrozowski, "Low-reflection subgridding," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 5, 1587-1592, May 2005.
doi:10.1109/TMTT.2005.847048

14. Kulas, L. and M. Mrozowski, "Macromodels in the frequency domain analysis of microwave resonators," IEEE Microwave and Wireless Components Letters, Vol. 14, 94-96, 2004.
doi:10.1109/LMWC.2004.825165

15. Podwalski, J., P. Sypek, L. Kulas, and M. Mrozowski, "FDTD analysis of EBG structures with macromodel cloning," IEEE MTT-S International Microwave Symposium Digest, 296-299, Jun. 11-16, 2006.

16. Cangellaris, A. C., M. Celik, S. Pasha, and Z. Li, "Electromagnetic model order reduction for system-level modeling," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, 840-850, 1999.
doi:10.1109/22.769317

17. Zhu, Y. and A. C. Cangellaris, Multigrid Finite Element Methods for Electromagnetic Field Modeling, John Wiley & Sons, Inc., 2006.

18. Remis, R. F., "An efficient model-order reduction approach to low-frequency transmission line modeling," Progress In Electromagnetics Research, Vol. 101, 139-155, 2010.
doi:10.2528/PIER09123006

19. Kowalczyk, P., L. Kulas, and M. Mrozowski, "Analysis of microstructured optical fibers using compact macromodels," Opt. Express, Vol. 19, 19354-19364, 2011.
doi:10.1364/OE.19.019354

20. Song, Z., D. Su, F. Duval, and A. Louis, "Model order reduction for PEEC modeling based on moment matching," Progress In Electromagnetics Research, Vol. 114, 285-299, 2011.

21. Moore, B., "Principal component analysis in linear systems: Controllability, observability, and model reduction," IEEE Trans. Automat. Contr., Vol. 26, 17-32, 1981.
doi:10.1109/TAC.1981.1102568

22. Feldmann, P. and R. W. Freund, "Efficient linear circuit analysis by pade approximation via the lanczos process," IEEE Transactions on Computer-Aided Design, Vol. 14, 639-649, 1995.
doi:10.1109/43.384428

23. Odabasioglu, A., M. Celik, and L. T. Pileggi, "PRIMA: Passive reduced-order interconnect macromodeling algorithm," 1997 IEEE/ACM International Conference on Computer-Aided Design, 1997. Digest of Technical Papers , 58-65, Nov. 9-13, 1997.

24. Sheehan, B. N., "ENOR: Model order reduction of RLC circuits using nodal equations for efficient factorization," Proc. IEEE 36th Design Automat. Conf., 17-21, 1999.

25. Chen, Y. and J. White, "A quadratic method for nonlinear model order reduction," Proc. Int. Conf. Modeling and Simulation of Microsystems, 477480 2000.

26. Rewienski, M. and J. White, "A trajectory piecewise-linear approach to model order reduction and fast simulation of nonlinear circuits and micromachined devices," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 22, No. 2, 155-170, Feb. 2003.
doi:10.1109/TCAD.2002.806601

27. Chaturantabut, S. and D. C. Sorensen, "Discrete empirical interpolation for nonlinear model reduction," Proceedings of the 48th IEEE Conference on Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Conference. CDC/CCC 2009, 4316-4321, Dec. 15-18, 2009.

28. Dohlus, J. M., P. Hahne, X. Du, B. Wagner, T. Weiland, and S. G. Wipf, "Using the Maxwell grid equations to solve large problems," IEEE Transactions on Magnetics, Vol. 29, No. 2, 1914-1917, Mar. 1993.
doi:10.1109/20.250782

29. Lech, R. and J. Mazur, "Tunable waveguide filter with bow-tie metallic posts," IEE Proceedings --- Microwaves, Antennas and Propagation, Vol. 151, No. 2, 156-160, Apr. 2004.
doi:10.1049/ip-map:20040166

30. "ANSYS HFSS," 3D Full-wave Electromagnetic Field Simulation, http://www.ansoft.com/products/hf/hfss/overview.cfm.

31. Belenguer, A., H. Esteban, E. Diaz, C. Bachiller, J. Cascon, and V. E. Boria, "Hybrid technique plus fast frequency sweep for the efficient and accurate analysis of substrate integrated waveguide devices," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 3, 552-560, Mar. 2011.
doi:10.1109/TMTT.2010.2098884

32. Zhang, X. C., Z. Y. Yu, and J. Xu, "Novel band-pass substrate integrated waveguide (SIW) filter based on complementary split ring resonators (CSRRS)," Progress In Electromagnetics Research, Vol. 72, 39-46, 2007.
doi:10.2528/PIER07030201

33. Zhang, Q. L., W. Y. Yin, S. He, and L. S. Wu, "Evanescent-mode substrate integrated waveguide (SIW) filters implemented with complementary split ring resonators," Progress In Electromagnetics Research, Vol. 111, 419-342, 2011.
doi:10.2528/PIER10110307