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Abstract—In this paper, a novel idea of reducing numerical
complexity of finite difference method using multiple macromodels is
presented. The efficiency of the macromodeling technique depends
on the number of ports of a model. To enhance the efficiency of
the algorithm the field samples at the boundary of the macromodel
are replaced with amplitudes of discretized Legendre polynomials.
Redefining the problem in such manner results in significant reduction
of the analysis time. The validity and efficiency of the proposed
procedure are demonstrated by performing the analysis of two
microwave filters requiring a high density mesh.

1. INTRODUCTION

The finite difference (FD) technique is one of the most versatile and
simple methods of computational electromagnetics [1, 2], frequently
implemented in commercial software [3, 4]. The FD method can be
used to determine resonant frequencies of resonators, to investigate
scattering parameters of microwave and RF devices [5, 6] and to
analyze propagation characteristics of waveguides [7, 8]. However, it
has several obvious disadvantages when it comes to the analysis of large
and multiscale structures (i.e., containing small geometrical features
in comparison to the dimension of the entire structure). In the FD
method the whole domain is discretized and covered with structured
Yee’s mesh. In multiscale problems a huge number of variables is
required to properly discretize the numerical domain. As a result, the
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simulation can be very time and memory-consuming. The problem
can be alleviated by applying a locally denser mesh only for crucial
regions. This technique (called subgridding) is well described in the
literature [9, 12, 13]. However, despite evident reduction of variables,
the final problem can still be too big to analyze it in a reasonable time.

A significant improvement of the efficiency of the mentioned
scheme can be achieved by applying a model order reduction (MOR)
method for the subgridded regions [9–11, 14]. MOR allows one to
eliminate redundant internal variables, and thus it is particularly useful
when the discretization is very fine. It has been successfully applied
in computational electromagnetics and photonics both for time and
frequency domain analysis [12, 15–20].

Model order reduction (MOR) has originally been introduced
for acceleration of numerical analysis of dynamical systems for
which one evaluates the transfer function by inverting a system
matrix [21]. Since 1990’s numerous techniques of reduction have been
developed: PVL (Pade via Lanczos) [22], PRIMA (Passive Reduced-
Order Interconnect Macromodeling Algorithm) [23], ENOR (Efficient
Nodal Order Reduction) [24], Quadratic Method [25], PWL (Piecewise
Linear Algorithm) [26] and DEIM (Discrete Empirical Interpolation
Method) [27]. All these techniques generate a small set of orthogonal
vectors which span the solution subspace in the fixed frequency range.
As a result, solving of the problem is limited to the new subspace.

The main idea of macromodeling procedure is quite simple [14].
At first, Maxwell’s equations are transformed into Maxwell’s grid
equations [28]. Next, a particular region of the domain is selected,
the mesh in this region is refined and input/output ports are defined.
For the finite difference method, ports can be associated with the field
samples at the boundary of the selected region. The global matrix
operator, formed from Maxwell’s grid equations, is separated into one
part corresponding to the model and the second part corresponding
to the rest of the domain. In the next step, a projection of the
operator (its part corresponding to the model) onto a smaller subspace
is performed. The projection eliminates most of the internal state
variables, while the relation between the output and input ports
remains preserved for a limited frequency range. Finally, the reduced
part of the operator is coupled with the unprojected part of the domain.
As a result, the problem size is smaller and the computation time is
much shorter.

The speed of reduction and simulation depends strongly on the
number of ports coupling the model with the global domain (field
samples at the boundary of the model). Therefore, to improve the
efficiency we propose to compress the data passed between the main
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domain and the macromodel. To this end the fields at the boundary of
the macromodel are expanded into a series of Legendre polynomials.
As a result, a large number of ports (field samples) is reduced to several
amplitudes of Legendre polynomials. Such an improvement results in
a substantially smaller size of the problem and very fast analysis.

2. THE IDEA OF MACROMODELING

The concept of model order reduction for accelerating the finite
difference analysis of microwave and photonic structures has been
thoroughly discussed in a number of papers [9–12, 14]. For this reason
only key formulas will be involved here without detailed explanation.

The finite difference method uses a discretized form of the
Maxwell’s equations [12]

RHh = jωDεe, (1)
REe = −jωDµh, (2)

where e and h are vectors of the electric and magnetic field samples
for each discretized cell. Matrices RE and RH are the curl matrices
of vectors e and h. Matrices Dε and Dµ store the values of the
permittivity and permeability for each cell.

2.1. Subgridding

In multiscale problems, where a structure to be analyzed is large and
has small geometrical features, the fine mesh is required to resolve
them in the FD method. This problem can be alleviated by covering
the structure with a coarse mesh and introducing a technique known

Small detail in
 coarse mesh  

Locally denser
       mesh

Figure 1. An example of a 2-dimensional structure with a local
subgrid.
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as subgridding [13] (a locally denser mesh — see Fig. 1). In such a
case, Maxwell’s grid equations take up the following form

[ RH 0 RHb

0 R̂H ŜH

]



h

ĥ
hb


 = s

[ Dε 0

0 D̂ε

] [
e
ê

]
, (3)




RE 0

0 R̂E

REb
SE




[
e
ê

]
= −s




Dµ 0 0

0 D̂µ 0
0 0 Dµb







h

ĥ
hb


 , (4)

where the symbols with and without hat refer to the dense (local) and
coarse grid respectively. Additionally, vector hb stores the information
about the field values at the boundaries between the meshes and matrix
Dµb

stores the information about the permeability of the boundary
cells.

Matrices SE and ŜH couple the local grid ê vector to boundary
vector hb and matrices REb

and RHb
couple boundary vector hb to

vector e of the main grid.

2.2. Coupling Matrices

For a typical subgrid hb stores the boundary field values explicitly. The
coupling matrices in such a case are created in the following manner

RHb
= LH, (5)

REb
= BE, (6)

ŜH = B̂HIH, (7)

SE = IEL̂E. (8)
Matrices LH and BE may be regarded as the port-choosing matrices
for the main grid [12]. They select the field samples defined in the
coarse grid and taken at the boundary between grids (see Fig. 1).
Matrices B̂H and L̂E are the port-choosing matrices of the subgrid
(dense mesh), which are connected to the boundaries by interpolation
matrices IH and IE [9].

2.3. Model Order Reduction

The region covered with a fine grid can be seen by the electromagnetic
field on the main grid as a “black-box”, whose electromagnetic response
is given by a matrix-valued transfer function. Accordingly, the state-
space equations in such region can be processed with a model order
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reduction algorithm (see [14] for details). In our research we focus
on the ENOR algorithm [24], which is a common method capable of
solving linear problems. However, for nonlinear problems the reduction
should be performed with a different MOR scheme e.g., Quadratic
Method [25], PWL [26] or DEIM [27].

The ENOR algorithm produces a set of orthogonal vectors
spanning the subspace with a reduced number of state variables. Let
us denote by V the basis generated by the ENOR algorithm. Using
the procedure described in [14] we may transform Equations (3)–(4)
to the following form.
[

RH
′ 0 RHb

0 V̂T R̂H V̂T Ŝ′H

]


h

ĥ
hb


 = s

[ Dε 0

0 V̂T D̂εV̂
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êm

]
, (9)
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hb


 . (10)

The size of the basis V exerts a significant impact on the numerical
costs of the reduction procedure and total analysis time. The size
of this basis (the number of columns in V) is a product of the
number of ports p and the model reduction order q. The reduction
order determines a frequency range of the approximation and, for
electrically small regions, takes rather small values — usually it is
2 or 3. Therefore, the size of V is determined by the number of ports
(field samples at the boundary), which may be quite high.

To improve the efficiency of this technique we propose to compress
the amount of data related to coupling between the macromodel and
the main grid thereby achieving reduction of the number of ports. To
this end, we postulate to replace the large number of field samples by a
much smaller number of amplitudes of some fixed functions describing
the field.

2.4. Legendre Polynomials Compression

Let us assume that function F (x) describes the electric or magnetic
field distribution on the normalized interval x ∈ [−1, 1]. In the
FD method the field is represented by a vector of its samples F =
[F (x0), F (x1), . . . , F (xL−1)]T , where xn = 2n−L

L and L is the number
of samples (n = 0, 1, . . . , L− 1).

Compression using Legendre polynomials is based on a projection
of the field onto a subspace spanned by vectors obtained from Legendre
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polynomials sampled in fixed points. The projection matrix has the
following form

Q̃ =




P0(x0) P1(x0) . . . PM (x0)
P0(x1) P1(x1) . . . PM (x1)

...
...

P0(xL−1) P1(xL−1) . . . PM (xL−1)


 , (11)

where Pm(x) is the Legendre polynomial of m-th order. Although
Legendre polynomials are orthogonal in a continous domain, the
matrix (11) consisting of samples of those polynomials is not
orthogonal. However, this is not impediment as matrix Q̃ can easily be
orthogonalized (e.g., by using the Gram-Schmidt orthogonalization or
QR method). This improves the accuracy and simplifies calculations.
For this reason, furtheron we assume that matrix Q represents an
orthogonalized matrix Q̃.

According to above assumptions any vector F can now be
decomposed in the following manner (this projection is exact if the
number of basis vectors M is at least equal to the number of the field
samples N)

F = Qa, (12)

where a = [a0, a1, . . . , aM−1]T is a vector of discretized (and
orthogonalized) Legendre polynomial coefficients. Since Q is
orthogonal (Q−1 = QT ), the amplitudes can be found as

a = QTF. (13)

If the number of basis vectors M is smaller than the number of
the field samples L, the projection on a subspace spanned by M < L
vectors can be treated as a compression. Obviously, a projection onto a
truncated basis may result in loss of information. In order to quantify
this loss, let us assume that M < L and use (12) and (13) to get

FL = QQTF (14)

where FL is a compressed vector of field samples (spanned by
discretized Legendre polynomials).

In such a case, the difference between FL and F can be expressed
in the following form

RF = F− FL =
(
I−QQT

)
F, (15)

where RF belongs to the complementary subspace. Simultaneously
the vector RF defines the inaccuracy of the projection.
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2.5. Accuracy of the Compression

To determine the acceptable loss of accuracy caused by compression,
we analyzed RF with respect to the spatial frequency. Due to the
numerical dispersion the FD technique requires 10 field samples per
wavelength [1] to yield acceptable results. It implies that meaningful
results are obtained for waveforms with low spatial frequency content.
According to this assumption the maximal harmonic of the waveform
is βmax = 2π

10∆ = πL
10 (where ∆ = 2

L is a space discretization
step). To measure the magnitude of the error produced by projecting
the FD samples on a truncated basis of Legendre polynomials for
functions with low spatial frequency contents, we shall evaluate the
Discrete Fourier Transform (DFT) of (15) using only the Fourier terms
satisfying the ten samples per wavelength criterion, i.e., β ≤ βmax =
πL
10 .

D =




e−jβNx0 e−jβN−1x0 . . . 1 . . . ejβN−1x0 ejβNx0

e−jβNx1 e−jβN−1x1 . . . 1 . . . ejβN−1x1 ejβNx1

...
e−jβNxL−1 e−jβN−1xL−1 . . . 1 . . . ejβN−1xL−1 ejβNxL−1


 (16)

where βn = nπ and N is defined by the relation βN < βmax (N < L
10).

The compression has no influence on the accuracy only if RF

belongs to the kernel of the matrix D

DRF = 0. (17)

In other words, the compression is accurate, at least as far as
FD results are concerned, if RF does not contain any components
of low spatial frequency (which, for the FD method, is in the range
0 < β ≤ πL

10 ). Hence, matrix D can be treated as a testing operator,
which determines if a chosen function fulfils the criteria of βmax

(product DRF should be close to zero). The expression

DRF = D
(
I−QQT

)
F (18)

represents then the inaccuracy of the compression for a fixed vector F.
Since the norm of ||F|| is bounded and

||DRF || ≤ ||D (
I−QQT

) || ||F||, (19)

one can measure the inaccuracy of projection for fields with a limited
spatial frequency content by focusing on the following expression

error = ||D (
I−QQT

) ||. (20)
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Figure 2. Error of the Legendre
polynomial compression defined
by expression (20) with respect
to βmax = 2π

10∆ (10 samples per
wavelength).
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Figure 3. Error of the Legendre
polynomial compression defined
by expression (20) with respect
to βmax = 2π

20∆ (20 samples per
wavelength).

Figure 2 shows the value of (20) as a function of the number
of samples and the number of Legendre polynomials. It can be seen
that projection error drops, when the number of Legendre polynomials
exceeds L/3. This means that the same spatial spectrum content of a
sampled function can be faithfully represented by much fewer Legendre
terms.

If the criteria for βmax is less restrictive, then, obviously, the
number of polynomials can be lower (see Fig. 3 obtained for operator
D corresponding 20 samples per wavelength).

As a final note, let us observe that other polynomials (Chebyshev,
Gegenbauer or Jacobi) may also be used. The choice of Legendre
polynomials was determined by their orthogonality with weight
function 1.

2.6. Compression of Coupling Matrices

As explained in the previous section, it is possible to replace the field
samples with a small set of amplitudes of orthogonal polynomials.
Since the number of ports of the macromodel is crucial for the efficiency
of the model order reduction scheme, it is reasonable to use this
property to reduce this number by applying polynomial compression
to the field samples at the boundary between meshes.

The compression is achieved by projection (12) and since it
concerns only the fields at the boundary, it can be introduced into
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the coupling matrices (5–8) in the following manner

RHb
= LHQ, (21)

REb
= QTBE, (22)

ŜH = B̂HIHQ, (23)

SE = QTIEL̂E. (24)

Matrices (21–24) are smaller than (5–8). This implies that the
size of macromodel is also smaller. As a result, the analysis (including
construction of matrix V, using projection of boundary fields onto the
Legendre polynomials) becomes more efficient.

3. NUMERICAL RESULTS

As mentioned in Subsection 2.5, the compression error drops (in the
full range of spatial frequencies suitable for the FDFD mesh), when the
number of Legendre polynomials reaches L/3. Hence, the compression
level of 3 is assumed for future tests. (The compression level is defined
as a ratio of the number of field samples to the number of polynomials.)

The first analyzed structure is a tunable filter composed of four
metal obstacles placed in a 149.61 mm-long segment of a rectangular
waveguide WR-90 [29]. A top view of the device is presented in
Fig. 4. The structure is meshed with four local meshes with finer
resolution defined to accurately resolve four bow-tie obstacles. Each
local mesh region measures 14 by 21mm (regions covered with gray
background). The obstacles are full-height ones, therefore a 2D finite
difference analysis is sufficient to solve the problem.

Figure 4. A top view of the filter composed of four metal obstacles
placed in rectangular waveguide WR-90 (all dimensions in millimeters).
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Table 1. Convergence of resonant frequencies of a few modes for
different macromodel orders and different port compression level (main
grid ∆x = 0.028 mm and ∆y = 0.028mm, refinement factor of the local
meshes equal 15).

compression order = 1 order = 2 order = 3 order = 4
21 11.3779 11.0144 11.0130 11.0130
14 11.5526 11.2356 11.2346 11.2346
8 11.5275 11.2390 11.2385 11.2385
5 11.5259 11.2393 11.2389 11.2389
4 11.5259 11.2393 11.2389 11.2389
3 11.5259 11.2393 11.2389 11.2389
1 11.5259 11.2393 11.2389 11.2389
21 11.5139 11.2536 11.2527 11.2527
14 11.5955 11.3473 11.3469 11.3469
8 11.5795 11.3516 11.3513 11.3513
5 11.5782 11.3518 11.3516 11.3516
4 11.5782 11.3519 11.3516 11.3516
3 11.5782 11.3519 11.3516 11.3516
1 11.5782 11.3519 11.3516 11.3516
21 11.8222 11.4148 11.4130 11.4130
14 11.8943 11.4621 11.4613 11.4613
8 11.8535 11.4671 11.4666 11.4666
5 11.8521 11.4672 11.4667 11.4667
4 11.8520 11.4672 11.4667 11.4667
3 11.8520 11.4672 11.4667 11.4667
1 11.8520 11.4672 11.4667 11.4667

In order to provide numerical evidence for the choice of
compression level equal 3 and to determine the optimal order of
macromodels, the structure was enclosed with the electric walls and
the resonant frequencies were calculated. Table 1 presents the results
obtained for a few selected modes for different orders of reduction
and different boundary compression levels. The cell dimensions of the
main grid were assumed ∆x = 0.028mm and ∆y = 0.028mm and
the refinement factor of the local meshes was assumed to be 15 (the
refinement factor value was determined from the previous regular FD
simulations).
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One can easily observe convergence of their results as a function
of reduction order and compression level. Hence, for the further
calculations, a choice of order 3 is reasonable and the compression
level of 3 is indeed conservative. These values are used further on.

As the next step, filtering properties of the structure were
examined. The analysis was performed using commercial software
HFSS [30], the regular FD method (∆x = 0.028mm and ∆y =
0.028mm), the FD method with macromodels (refinement factor of
15) and the FD method with the compressed macromodels. The
transmission/reflection characteristics of the 3-rd order Chebyshev
filter with −20 dB return loss are shown in Fig. 5. The continuous line
was obtained by using HFSS, the dotted line — by using the regular
FD and the dashed line — by using compressed macromodels. All the
results are in a very good agreement.

The average errors and the CPU time for different densities of
the grid are collected in Table 2. The results obtained from the
analysis using HFSS are compared with the ones from the regular
FD, macromodeling (FD + MM) and with the ones applying Legendre
compression (FD + MM + LC). The CPU time refers to the Matlab
implementation and the error is evaluated from the following formula

ERR =

√√√√ 1
N

N∑

i=1

[∣∣SHFSS
11 (fi)

∣∣− |Sour
11 (fi)|

]2
, (25)

where SHFSS
11 (f) was obtained from the HFSS whereas Sour

11 (f) from
our simulation.
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Figure 5. The 3-rd order chebyshev characteristics of the filter
presented in Fig. 4.
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Table 2. The average error and the calculation time per one frequency
point obtained for different densities of the grid (the reduction time in
brackets).

(local) grid regular FD FD + MM FD + MM + LC
∆x ∆y error time error time error time

[mm] [mm] [s] [s] [s]
0.423 0.420 0.668 0.15 0.668 1.01 0.668 0.33

(8) (1)
0.141 0.140 0.305 2.10 0.285 1.16 0.285 0.29

(127) (10)
0.085 0.084 0.218 7.10 0.191 1.06 0.191 0.34

(324) (29)
0.060 0.060 0.148 16.20 0.116 1.01 0.116 0.29

(544) (60)
0.047 0.047 0.119 29.60 0.085 1.01 0.085 0.27

(818) (107)
0.038 0.038 0.093 45.97 0.060 1.03 0.060 0.35

(1258) (173)
0.033 0.032 0.074 65.18 0.039 1.02 0.039 0.31

(2253) (234)
0.028 0.028 0.057 91.29 0.024 1.08 0.024 0.35

(2722) (316)

Table 3. The calculation times [sec] of the frequency characteristics
for 30 and 100 frequency points.

points number regular FD FD + MM FD + MM + LC
30 2739 2754 327
100 9128 2830 351

In Table 3 the calculation times of the frequency characteristics are
collected. It is seen that the boundary compression can significantly
improve the efficiency of macromodeling. For the presented example
(with 100 frequency points) the simulation time can be reduced by
more than 8 times.

The second analyzed structure was a substrate integrated
waveguide filter (SIW) [32, 33] whose top view is presented in Fig. 6.
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This structure is particulary interesting from the point of view of
macromodeling. Almost each via-hole is a separate macromodel,
so in total there are 112 macromodels used in the analysis. The
analysis is performed using regular FD, FD with macromodels and FD
with the compressed macromodels (regions with local mesh measure
2.3 × 1.3mm and are denoted with gray background). Similarly to
the previous example, using Legendre polynomials at the boundaries
resulted in the reduction of the number of ports of each macromodel
by a factor of 3.

The results are compared with the ones obtained using the
asymptotic waveform evaluation (AWE) method [31] (a continuous
line in Fig. 7). The dotted line represents a regular FD analysis

Figure 6. A top view of the analyzed SIW structure (all dimensions
in millimeters).

Table 4. The average error and the calculation time per one frequency
point obtained for different densities of the grid (the reduction time in
brackets).

(local) grid regular FD FD + MM FD + MM + LC

∆x ∆y error time error time error time

[mm] [mm] [s] [s] [s]

0.0571 0.0619 0.371 4.5 0.371 34.2 0.371 6.6

(39) (25)

0.0190 0.0206 0.152 37.3 0.013 34.1 0.013 6.6

(429) (69)

0.0114 0.0124 0.096 130.9 0.068 34.2 0.068 6.7

(1388) (174)
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Figure 7. The 4-th order Chebyshev characteristics of the SIW filter.

(∆x = 0.00114mm and ∆y = 0.0124mm) and the dashed line
corresponds to the simulation using compressed macromodels (main
grid: ∆x = 0.0571mm and ∆y = 0.0619mm, refinement factor of 5).
Also for this structure the results are in a very good agreement.

In Table 4 the results obtained from the analysis using AWE are
compared with those from the regular FD, macromodeling (FD + MM)
and with the ones obtained by applying Legendre compression (FD +
MM + LC). The average error was evaluated by means of a formula
similar to (25).

Also, for this structure a significant improvement due to
compression can be observed. Moreover, it is shown that for some
large problems an application of regular macromodel can be inefficient
because of a huge number of ports.

4. CONCLUSIONS

The idea of compressing the ports of macromodels for finite difference
method utilizing Legendre polynomials was proposed and verified on
two examples. Numerical tests confirmed that the compression using
Legendre polynomials yields the reduction of memory requirements
and the simulation times. In all cases the improvement in memory
requirements and analysis times was significant. The simulation time
was reduced over 8 times for the considered examples.

It is noteworthy that the presented technique concerns macro-
model boundary compression and can be applied for any MOR
technique both for linear and nonlinear problems.
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