Vol. 39
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-03-20
Design and Optimization of Multilayered Electromagnetic Shield Using a Real-Coded Genetic Algorithm
By
Progress In Electromagnetics Research B, Vol. 39, 241-266, 2012
Abstract
We report optimized design of multilayered electromagnetic shield using real coded genetic algorithm. It is observed that the shielding effectiveness in multilayer design is higher than single layered counterpart of equal thickness. An effort has been made to develop alternative approach to achieve specific objective of identifying the design characteristics of each layer in the multilayered shielding configuration. The proposed approach incorporates interrelated factors, such as, absorption and reflection in the design optimization as per specific shielding requirements. The design problem has been solved using shielding effectiveness theory based on transmission line (TL) modeling and real-coded genetic algorithm (GA) with simulated binary crossover (SBX) and parameter-based mutation. The advantage of real-coded GA lies in efficient solution for electromagnetic interference (EMI) shielding design due to its strength in solving constraint optimization problems of continuous variables with many parameters without any gradient information. Additionally, the role of material parameters, such as permittivity and permeability on reflection characteristics and shielding effectiveness has also been investigated and optimized using the proposed models and real-coded GA. Theoretical optimization of electromagnetic parameters has been carried out for SE ~40 dB for many industrial/commercial applications and SE ~80 dB for military applications.
Citation
Heeralal Gargama, Sanjay Kumar Chaturvedi, and Awalendra K. Thakur, "Design and Optimization of Multilayered Electromagnetic Shield Using a Real-Coded Genetic Algorithm," Progress In Electromagnetics Research B, Vol. 39, 241-266, 2012.
doi:10.2528/PIERB12011902
References

1. , , "IEEE Standard: Method for Measuring the Effectiveness of Electromagnetic Shielding Enclosures ,", IEEE Standard 299, 1997, (revision of IEEE Standard 299, 1991).

2. Morgan, D., "A handbook for EMC testing and measurement," The Institution of Engineering and Technology, London, 2007.
doi:10.1002/pat.829

3. Hoang, N. H., J.-L. Wojkiewicz, J.-L. Miane, and R. S. Biscarro, "Lightweight electromagnetic shields using optimised polyaniline composites in the microwave band," Polymers for Advanced Technologies, Vol. 18, 257-262, 2007.
doi:10.1080/10426910802679535

4. Jourdan, L., O. Schutze, T. Legrand, E.-G. Talbi, and J. L. Wojkiewicz, "An analysis of the effect of multiple layers in the multi-objective design of conducting polymer composites," Materials and Manufacturing, Vol. 24, 350-357, 2009.
doi:10.1109/15.121666

5. Naishadham, K., "Shielding effectiveness of conductive polymers," IEEE Transactions on Electromagnetic Compatability, Vol. 34, No. 1, 47-50, 1992.
doi:10.1109/22.238519

6. Michielssen, E., J.-M. Sajer, S. Ranjithan, and R. Mitra, "Design of lightweight, broad-band absorbers using genetic algorithms," IEEE Transactions on Microwave Theory and Techniques, Vol. 41, 1024-1031, Jan. 1993.
doi:10.1109/15.925537

7. Oktem, M. H. and B. Saka, "Design of multilayered cylindrical shields using a genetic algorithm," IEEE Transactions on Electromagnetic Compatability, Vol. 43, No. 2, 170-176, 2001.
doi:10.1007/s11431-009-0145-x

8. Jiang, L. Y., X. Y. Li, and J. Zhang, "Design of high performance multilayer microwave absorbers using fast pareto genetic algorithm," Sci. China Ser. E.-Tech. Sci., Vol. 52, No. 9, 2749-2757, 2009.
doi:10.2528/PIERC10041310

9. Dib, N., M. Asi, and A. Sabbah, "On the optimal design of multilayer microwave absorbers," Progress In Electromagnetics Research C, Vol. 13, 171-185, 2010.
doi:10.1109/TMTT.2011.2160198

10. Micheli, D., et al. "Broadband electromagnetic absorbers using carbon nanostructure-based composites," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 10, 2633-2646, 2011.

11. Deb, K. and R. B. Agrawal, "Simulated binary crossover for continuous search space," Complex Systems, Vol. 9, 115-148, 1995.

12. Deb, K. and M. Goyal, "A combined genetic adaptive search (Gene AS) for engineering design," Computer Science and Informatics, Vol. 26, No. 4, 30-45, 1996.
doi:10.1016/S0045-7825(99)00389-8

13. Deb, K., "An efficient constraint handling method for the genetic algorithm," Computer Methods in Applied Mechanics and Engineering , Vol. 186, 311-338, 2000.
doi:10.1109/15.3297

14. Schulz, R. B., V. C. Plantz, and D. R. Brush, "Shielding theory in practice," IEEE Transactions on Electromagnetic Compatibility, Vol. 30, No. 3, 187-201, 1988.

15. Han, F. and L. C. Zhang, "Degeneration of shielding effectiveness of planar shields due to oblique incident plane waves," IEEE 1996 International Symposium on Electromagnetic Compatibility, Symposium Record, 82-86, Aug. 19-23, 1996.
doi:10.1016/j.synthmet.2005.05.011

16. Yavuz, O, M. K. Ram, M. Aldissi, P. Poddar, and H. Srikanth, "Polypyrrole composites for shielding applications," Synthetic Materials, Vol. 151, 211-217, 2005.

17. Hoang, N. N., "Realisation et caracterisation de structure composite polyaniline-polyurethane dans le domaine de micro-ondes. Modelisation et optimization de blindage electromagnetique multicouche en utilisant un algorithme genetique,", Ph.D. thesis-Ecole Doctorale Des Sciences Physiques et de l'Ingenieur, Universite de Bordeaux 1, France, 2005.

18. Goldberd, D. E., K. Deb, and J. H. Clark, "Genetic algorithms, noise, and the sizing of populations," Complex Systems, Vol. 6, 333-362, 1992.
doi:10.1109/74.632992

19. Johnson, J. M. and Y. Rahmat-Samii, "Genetic algorithms in engineering electromagnetic," IEEE Antennas and Propagation Magazine, Vol. 39, No. 4, 7-21, 1997.

20. Vukoc, S. and L. Sopta, "Binary-coded and real-coded genetic algorithm in pipeline flow optimization," Mathematical Communications, Vol. 4, 35-42, 1999.

21. Guru, B. and H. Hizigru, Electromagnetic Field Theory Fundamentals, 2nd Ed., 362-374, Cambridge University Press, 2009.
doi: --- Either ISSN or Journal title must be supplied.