Vol. 125
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-03-05
The Threshold Mode Structure Analysis of the Two-Dimensional Photonic Crystal Lasers
By
Progress In Electromagnetics Research, Vol. 125, 365-389, 2012
Abstract
In this work, threshold mode structures of two-dimensional (2D) photonic crystal (PC) lasers are presented. The subjects of this paper are finite photonic crystal structures with circular holes arranged in square and triangular lattices. In each case, both transverse magnetic (TM) and transverse electric (TE) polarization are studied. The analysis is based on the coupled-wave equations and analyzes modes' behavior for the wide range of coupling coefficient values. The laser mode is characterized by threshold gain and frequency deviation, and these quantities depend on coupling constants, which means that the threshold gain of the mode and the mode's frequency deviation depend on the coupling constants. Presented analysis gives an interesting insight into behavior of the modes in photonic crystal lasers.
Citation
Marcin Koba, and Pawel Szczepanski, "The Threshold Mode Structure Analysis of the Two-Dimensional Photonic Crystal Lasers," Progress In Electromagnetics Research, Vol. 125, 365-389, 2012.
doi:10.2528/PIER12011206
References

1. Miyai, E., K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, and S. Noda, "Lasers producing tailored beams," Nature, Vol. 441, 946, 2006.
doi:10.1038/441946a

2. Sakai, K., E. Miyai, T. Sakaguchi, D. Ohnishi, T. Okano, and S. Noda, "Lasing band-edge identification for a surface-emitting photonic crystal laser," IEEE J. Sel. Areas Commun., Vol. 23, No. 7, 1335-1340, 2005.
doi:10.1109/JSAC.2005.851205

3. Imada, M., S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, "Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure," Appl. Phys. Lett., Vol. 75, No. 3, 316-318, 1999.
doi:10.1063/1.124361

4. Meier, M., A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, "Laser action from two-dimensional distributed feedback in photonic crystals," Appl. Phys. Lett., Vol. 74, No. 1, 7-9, 1999.
doi:10.1063/1.123116

5. Noda, S., M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, "Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design," Science, Vol. 293, No. 5532, 1123-1125, 2001.
doi:10.1126/science.1061738

6. Turnbull, G. A., P. Andrew, W. L. Barnes, and I. D. W. Samuel, "Operating characteristics of a semiconducting polymer laser pumped by a microchip laser," Appl. Phys. Lett., Vol. 82, No. 3, 313-315, 2003.
doi:10.1063/1.1536249

7. Vurgaftman, I. and J. R. Meyer, "Design optimization for high-brightness surface-emitting photonic-crystal distributed-feedback lasers," IEEE J. Quantum Electron., Vol. 39, No. 6, 689-700, 2003.
doi:10.1109/JQE.2003.811943

8. Ohnishi, D., T. Okano, M. Imada, and S. Noda, "Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser," Opt. Express, Vol. 12, No. 8, 1562-1568, 2004.
doi:10.1364/OPEX.12.001562

9. Matsubara, H., S. Yoshimoto, H. Saito, Y. Jianglin, Y. Tanaka, and S. Noda, "GaN photonic-crystal surface-emitting laser at blue-violet wavelengths," Science, Vol. 319, No. 5862, 445-447, 2008.
doi:10.1126/science.1150413

10. Lu, T. C., S. W. Chen, L. F. Lin, T. T. Kao, C. C. Kao, P. Yu, H. C. Kuo, and S. C. Wang, "GaN-based two-dimensional surface-emitting photonic crystal lasers with AlN/GaN distributed Bragg reflector," Appl. Phys. Lett., Vol. 92, No. 1, 0111291-3, 2008.

11. Kim, M., C. S. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, "Surface emitting photonic-crystal distributed-feedback laser for the midinfrared," Appl. Phys. Lett., Vol. 88, No. 19, 1911051-3, 2006.

12. Imada, M., A. Chutinan, S. Noda, and M. Mochizuki, "Multidirectionally distributed feedback photonic crystal lasers," Phys. Rev. B, Vol. 65, No. 19, 1953061-8, 2002.
doi:10.1103/PhysRevB.65.195306

13. Yokoyama, M. and S. Noda, "Finite-difference time-domain simulation of two-dimensional photonic crystal surface-emitting laser," Opt. Express, Vol. 13, No. 8, 2869-2880, 2005.
doi:10.1364/OPEX.13.002869

14. Plihal, M. and A. A. Maradudin, "Photonic band structure of two-dimensional systems: The triangular lattice," Phys. Rev. B, Vol. 44, No. 16, 8565-8571, 1991.
doi:10.1103/PhysRevB.44.8565

15. Sakai, K., E. Miyai, and S. Noda, "Coupled-wave model for square-lattice two-dimensional photonic crystal with transverse-electric-like mode," Appl. Phys. Lett., Vol. 89, No. 2, 0211011-3, 2006.
doi:10.1063/1.2220057

16. Sakai, K., E. Miyai, and S. Noda, "Coupled-wave theory for square-lattice photonic crystal lasers with TE polarization," IEEE J. Quantum Electron., Vol. 46, No. 5, 788-795, 2010.
doi:10.1109/JQE.2009.2037597

17. Sakai, K., E. Miyai, and S. Noda, "Two-dimensional coupled wave theory for square-lattice photonic-crystal lasers with TM-polarization," Opt. Express, Vol. 15, 3981-3990, 2007.
doi:10.1364/OE.15.003981

18. Sakai, K., J. Yue, and S. Noda, "Coupled-wave model for triangular-lattice photonic crystal with transverse electric polarization," Opt. Express, Vol. 16, No. 9, 6033-6040, 2008.
doi:10.1364/OE.16.006033

19. Koba, M., P. Szczepanski, and T. Kossek, "Nonlinear operation of a 2D triangular lattice photonic crystal laser," IEEE J. Quantum Electron., Vol. 47, No. 1, 13-19, 2011.
doi:10.1109/JQE.2010.2052237

20. Scamarcio, G., F. Capasso, C. Sirtori, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, "High-power infrared (8-micrometer wavelength) superlattice lasers," Science, Vol. 276, No. 5313, 773-776, 1997.
doi:10.1126/science.276.5313.773

21. Kogelnik, H., "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J., Vol. 48, 2909-2947, 1969.

22. Kazarinov, R. and C. Henry, "Second-order distributed feedback lasers with mode selection provided by first-order radiation losses," IEEE J. Quantum Electron., Vol. 21, No. 2, 144-150, 1985.
doi:10.1109/JQE.1985.1072627

23. Johnson, S. and J. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Opt. Express, Vol. 8, No. 10, 173-190, 2001.
doi:10.1364/OE.8.000173

24. Liang, Y., C. Peng, K. Sakai, S. Iwahashi, and S. Noda, "Three-dimensional coupled-wave model for square-lattice photonic crystal lasers with transverse electric polarization: A general approach," Phys. Rev. B, Vol. 84, No. 19, 1951191-11, 2011.
doi:10.1103/PhysRevB.84.195119

25. Peng, C., Y. Liang, K. Sakai, S. Iwahashi, and S. Noda, "Coupled-wave analysis for photonic-crystal surface-emitting lasers on air holes with arbitrary sidewalls," Opt. Express, Vol. 19, No. 24, 24672-24686, 2011.
doi:10.1364/OE.19.024672