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Abstract—In this work, threshold mode structures of two-
dimensional (2D) photonic crystal (PC) lasers are presented. The
subjects of this paper are finite photonic crystal structures with
circular holes arranged in square and triangular lattices. In each
case, both transverse magnetic (TM) and transverse electric (TE)
polarization are studied. The analysis is based on the coupled-wave
equations and analyzes modes’ behavior for the wide range of coupling
coefficient values. The laser mode is characterized by threshold gain
and frequency deviation, and these quantities depend on coupling
constants, which means that the threshold gain of the mode and
the mode’s frequency deviation depend on the coupling constants.
Presented analysis gives an interesting insight into behavior of the
modes in photonic crystal lasers.

1. INTRODUCTION

Recently, there has been increasing interest in two-dimensional (2D)
photonic crystal (PC) lasers utilizing a 2D distributed feedback (DFB)
mechanism. They have been attracting much attention because of their
important characteristics, such as single mode operation in a large
cavity area and a diffraction-limited circular-shape output beam [1, 2].
The PC laser demonstrations were obtained under pulse excitation,
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weather optical or electrical, as well as continues wave regime [3–11].
Simultaneously, theoretical models of PC laser structures have been
developed [12–19]. Particularly, coupled-wave models for square and
triangular lattices 2D PC lasers with transverse electric and transverse
magnetic like modes have been presented. In [16, 17], the coupled-wave
equations and field distributions for square lattice PC laser were shown
for TE and TM modes, respectively.

In [15], the expressions for the resonant frequencies of mode
derived from the coupled-mode equations describing the characteristics
of experimental results for the band-edge frequencies of the 2D
PC laser are shown. In the case of TM-like modes [17], the
threshold characteristics for this kind of laser structures have been
obtained. It is also shown that this lasing mode can be selected
by manipulating the filling factor or the boundary reflection. In
order to further develop the PC laser, it seems to be important to
investigate different crystal geometries such as triangular lattice. A
PC laser with triangular lattice geometry has been studied [3, 4] and
was found to have six resonant modes at the edge of photonic band
structure. Some of the resonant properties have been studied in
further works [7, 12]. Recently, coupled-wave model for triangular-
lattice photonic crystal with transverse electric polarization has been
presented [18]. The analytic expressions that describe the relations
between the resonant mode frequencies and coupling constant have
been derived. However, it is also important to understand the resonant
modes with TM polarization, since for example the promising light
sources for TM region (e.g., quantum cascade lasers) have their gain
in TM polarization [20]. In this paper, two cases of photonic crystal
symmetries (square and triangular) and TE and TM polarizations, for
each structure, are analyzed. In comparison with earlier works, this
one gathers all four possible scenarios and analyzes them in the wide
range of the coupling coefficient values, extending the two-dimensional
coupled-wave model for triangular lattice photonic crystal laser to
describe threshold behavior of the TM-like modes.

2. COUPLED-WAVE MODELS

Throughout this work a PC structure in a fixed square area with
circular holes arranged in square or triangular lattice is considered.
Following works of, e.g., Plihal and Maradudin [14] and Sakai et
al. [2, 16–18], four cases are distinguished: PC cavity with square
and triangular lattices with, in each case, TE and TM modes. The
discussed structures are schematically shown in Figure 1. These
structures are assumed to be uniform and not confined in the z
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(a) (b)

Figure 1. A schematic cross section of (a) square and (b) triangular
lattice photonic crystal structures.

direction.
The scalar wave equations for the electric and magnetic fields, Ez

and Hz, respectively, are written in the following form [14]:

∂2Ez

∂x2
+

∂2Ez

∂y2
+ k2Ez = 0 (1)

and
∂

∂x

{
1
k2

∂

∂x
Hz

}
+

∂

∂y

{
1
k2

∂

∂y
Hz

}
+ Hz = 0 (2)

In Equations (1) and (2), the constant k is given by:

k2 = β2 + 2i(α− αL)β + 2β
∑

G 6=0

κ(G) exp (i (G · r)) (3)

in case of TM mode [17] and by

1
k2

=
1
β4


β2 − i2(α− αL)β + 2β

∑

G 6=0

κ(G) exp (i (G · r))

 (4)

in case of TE mode [18]. In Equations (3) and (4) β = 2πε
1/2
0 /λ where

ε0 = ε(G = 0) is the averaged dielectric permittivity (ε1/2
0 corresponds

to averaged refractive index n), α an averaged gain in the medium,
κ(G) the coupling constant, λ the Bragg wavelength, G = (mb1, nb2)
the reciprocal lattice vector, and m and n the arbitrary integers.
b1 and b2 vary depending on the structure symmetry. Therefore,
these vectors are expressed in the following forms b1 = (βs

0, 0) and
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b2 = (0, βs
0) for square lattice, and b1 = (βt

0, 0) and b2 = (−βt
0
2 ,

√
3βt

0
2 )

for triangular lattice structure, where βs
0 = 2π/a and βt

0 = 4π/
√

3a.
In the derivation of Equations (3) and (4) following e.g., [17, 21], we

set α ¿ β ≡ 2πε
1/2
0

λ , εG 6=0 ¿ ε0, and αG ¿ β. In these equations,
the periodic variation in the refractive index is included as a small
perturbation and appears in the third term through the coupling
constant κ(G) of the form:

κ(G) = − π

λε
1/2
0

ε(G)± i
α(G)

2
(5)

In (5), plus sign refers to TM polarization (3), while minus sign refers to
TE polarization (4). Further, we set α(G)|G 6=0 = 0 neglecting spatial
periodicity of gain. In the vicinity of the Bragg wavelength, some
of the diffraction orders contribute to the coupling of waves in more
significant way than the others. In general, a periodic perturbation
produces an infinite set of diffraction orders. The Bragg frequency
corresponding to the Γ point in the photonic band structure [12]
is chosen for the purpose of this paper, and the most significantly
contributing coupling constants are expressed as follows:

κ1 = κ(G)||G|=βs,t
0

κ2 = κ(G)||G|=√3βs,t
0

κ3 = κ(G)||G|=2βs,t
0

(6)

In Equations (1) and (2), electric and magnetic fields for the
infinite periodic structure are given by the Bloch mode [14]:

Ez(r) =
∑

G

e(G) exp (i (k + G) · r) (7)

and
Hz(r) =

∑

G

h(G) exp (i (k + G) · r) (8)

where functions e(G) and h(G) correspond to the plane wave
amplitudes, whereas wave vector is denoted by k. It is worth noting
here that for the more general three-dimensional case with vertical
confinement (i.e., in z direction) only the waves diffracted in the plane
should be included, e.g., [24]. In the first Brillouin zone k = 0 at
the Γ point [16–18]. For a finite structure, the amplitude of each
plane wave is not a constant, so e(G) and h(G) become functions of
space. At the Γ point, we consider only the amplitudes (e(G), h(G))
which are the most significant and let include one- and two-dimensional
coupling effects, i.e., in most cases with |G| = βs,t

0 , except for square
lattice with TE polarization where additional h(G) amplitudes with
|G| = √

2βs
0 have to be included [15]. For the purpose of this article, the
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contributions of higher order waves in the Bloch mode are considered
negligible, which in general is not true, especially for non circular holes,
e.g., [24, 25].

2.1. Square Lattice

2.1.1. TM Polarization

Considering square lattice photonic crystal with TM polarization, it
is assumed that at the Γ point, the most significant contribution to
coupling is given by the electric waves, which fulfill the condition
(|G| = βs

0). Thus, all higher order electric wave expansion coefficients
(|G| ≥ √

2β0) are neglected. Four basic waves most significantly
contributing to coupling are depicted in Figure 2.

Equation (7) describes infinite structures. It is possible to take
into account the fact that the structure is finite by using the space
dependent amplitudes, e.g., [15]. Thus, the electric field (7) in the
finite periodic structure can be expressed in the following way:

Ez =Es
1(x, y)e−iβs

0x+Es
2(x, y)eiβs

0x+Es
3(x, y)e−iβs

0y+Es
4(x, y)eiβs

0y (9)

In (9) Es
i , i = 1 . . . 4 are the four basic electric field amplitudes of

waves propagating in four directions +x, −x, +y, y. These amplitudes
correspond to e(G) in Equation (7). In further analysis, the space
dependence notation is omitted.

Putting Equations (3) and (9) into Equation (1), and assuming
the slow varying electromagnetic field, one can get the set of coupled
mode equations [17]:

− ∂

∂x
Es

1+(α− αL − κ0 − iδ) Es
1 = (iκ3−κ0) Es

3+iκ2 (Es
2+Es

4) (10)

∂

∂x
Es

3+(α− αL − κ0 − iδ) Es
3 = (iκ3−κ0) Es

1+iκ2 (Es
2+Es

4) (11)

− ∂

∂y
Es

2+(α− αL − κ0 − iδ) Es
2 = (iκ3−κ0) Es

4+iκ2 (Es
1+Es

3) (12)

∂

∂y
Es

4+(α− αL − κ0 − iδ) Es
4 = (iκ3−κ0) Es

2+iκ2 (Es
1+Es

3) (13)

where
δ = (β2 − βs2

0 )/2β ≈ β − βs
0 (14)

is the Bragg frequency deviation, κ2 and κ3 are coupling coeffi-
cients [18]. The κ2 coefficient is responsible for orthogonal coupling
(e.g., the coupling of Es

1 to Es
2 and Es

4), and κ2 corresponds to back-
ward coupling (e.g., the coupling of Es

1 to Es
3). The additional coef-
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Figure 2. Schematic cross
section of square lattice photonic
crystal laser active region, where
the four basic waves involved in
coupling for TM polarization are
shown.

Figure 3. Schematic cross
section of square lattice photonic
crystal laser active region, where
the eight basic waves involved in
coupling for TE polarization are
shown.

ficient κ0 denotes surface emission losses [16, 17]. Solution of Equa-
tions (10)–(13) for the boundary conditions:

Es
1

(
−L

2
, y

)
=Es

3

(
L

2
, y

)
=0, Es

2

(
x,−L

2

)
=Es

4

(
x,

L

2

)
=0 (15)

defines eigenmodes of the photonic structure. The analysis of this
solution will be shown in Section 3.

2.1.2. TE Polarization

In the square lattice photonic crystal cavity with TE polarization,
as mentioned before, the coupling process involves magnetic waves
satisfying following conditions (|G| = β0) and (|G| =

√
2β0) [16],

neglecting higher order Bloch modes. Eight basic waves most
significantly contributing to coupling are depicted in Figure 3.

Similar as in the case of TM polarization, the equation for
magnetic field (8) describes modes for infinite structure. Thus, the
finite dimensions of the structure are described by spatial dependence
of magnetic field amplitudes [16], and the magnetic field (8) is written
in the following form:

Hz(r) = Hs
1(x, y)e−iβs

0x + Hs
5(x, y)eiβs

0x + Hs
3(x, y)e−iβs

0y

+Hs
7(x, y)eiβs

0y + Hs
2(x, y)e−iβs

0x−iβs
0y + Hs

4(x, y)eiβs
0x−iβs

0y

+Hs
6(x, y)eiβs

0x+iβs
0y + Hs

8(x, y)e−iβs
0x+iβs

0y (16)
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In Equation (16), Hs
i , i = 1 . . . 8 are the eight basic magnetic field

amplitudes of waves propagating in directions schematically shown
in Figure 3. These amplitudes correspond to h(G) in Equation (8).
Joining Equations (4), (16), and (2), and assuming slowly varying
amplitudes, the coupled-wave equations for TE modes in square lattice
PC are obtained:

− ∂

∂x
Hs

1 + (α− αL − κ0 − iδ)Hs
1

= (iκ3 − κ0)Hs
5 + i

2κ2
1

βs
0

(2Hs
1 + Hs

3 + Hs
7) (17)

∂

∂x
Hs

5 + (α− αL − κ0 − iδ)Hs
5

= (iκ3 − κ0)Hs
1 + i

2κ2
1

βs
0

(2Hs
5 + Hs

3 + Hs
7) (18)

− ∂

∂x
Hs

3 + (α− αL − κ0 − iδ)Hs
3

= (iκ3 − κ0)Hs
7 + i

2κ2
1

βs
0

(2Hs
3 + Hs

1 + Hs
5) (19)

∂

∂x
Hs

7 + (α− αL − κ0 − iδ)Hs
7

= (iκ3 − κ0)Hs
3 + i

2κ2
1

βs
0

(2Hs
7 + Hs

1 + Hs
5) (20)

In the derivation of the above equations, the derivatives of slowly
varying amplitudes Hs

i , i = 2, 4, 6, 8 and terms much smaller than
δ were neglected. In Equations (17)–(20), δ is the Bragg frequency
deviation, given by (14). The expressions for the coupling coefficients
κ1, κ2, and κ3 can be found in [16, 18].

In contrast to TM polarization, in Equations (17)–(20), the
coupling coefficient κ2 responsible for coupling in perpendicular
direction vanishes. The coupling coefficient κ3 has the same meaning
as described in the previous case, whereas the coupling coefficient κ1

describes, for example, the coupling of waves Hs
1 , Hs

2 , and Hs
8 .

Solution of Equations (17)–(20) while taking into account
boundary conditions:

Hs
7

(
−L

2
, y

)
=Hs

5

(
L

2
, y

)
=0, Hs

3

(
x,−L

2

)
=Hs

7

(
x,

L

2

)
=0 (21)

defines structure eigenmodes at lasing threshold, i.e., in the linear case.
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2.2. Triangular Lattice

2.2.1. TM Polarization

In the triangular lattice photonic crystal cavity with TM polarization,
the coupling process involves waves satisfying following conditions
(|G| = β0) [18, 19], neglecting higher order Bloch modes. Six basic
waves most significantly contributing to coupling are depicted in
Figure 4.

The space dependent amplitudes for electric field e(G) (Equa-
tion (7)) in triangular lattice photonic crystal cavity are written in the
following form [19]:

Ez = Et
1(x, y)e−iβt

0x+Et
2(x, y)e−i

βt
0
2

x−i

√
3βt

0
2

y+Et
3(x, y)ei

βt
0
2

x−i

√
3βt

0
2

y

+Et
4(x, y)eiβt

0x+Et
5(x, y)ei

βt
0
2

x+i

√
3βt

0
2

y+Et
6(x, y)e−i

βt
0
2

x+i

√
3βt

0
2

y (22)

In Equation (22), Et
i , i = 1 . . . 6, are the six electric field amplitudes

propagating in the symmetry directions (Figure 4). Combining
Equations (3), (22) and (1), and assuming slowly varying amplitudes,
the coupled-wave equations for TM modes in triangular lattice PC are
obtained:

− ∂

∂x
Et

1 + (α− αL − κ0 − iδ)Et
1

= iκ1

(
Et

2 + Et
6

)
+ iκ2

(
Et

3 + Et
5

)
+ (iκ3 − κ0) Et

4 (23)

−1
2

∂

∂x
Et

2 −
√

3
2

∂

∂y
Et

2 + (α− αL − κ0 − iδ)Et
2

= iκ1

(
Et

1 + Et
3

)
+ iκ2

(
Et

4 + Et
6

)
+ (iκ3 − κ0) Et

5 (24)

1
2

∂

∂x
Et

3 −
√

3
2

∂

∂y
Et

3 + (α− αL − κ0 − iδ) Et
3

= iκ1

(
Et

2 + Et
4

)
+ iκ2

(
Et

1 + Et
5

)
+ (iκ3 − κ0) Et

6 (25)
∂

∂x
Et

4 + (α− αL − κ0 − iδ)Et
4

= iκ1

(
Et

3 + Et
5

)
+ iκ2

(
Et

2 + Et
6

)
+ (iκ3 − κ0) Et

1 (26)

1
2

∂

∂x
Et

5 +
√

3
2

∂

∂y
Et

5 + (α− αL − κ0 − iδ) Et
5

= iκ1

(
Et

4 + Et
6

)
+ iκ2

(
Et

1 + Et
3

)
+ (iκ3 − κ0) Et

2 (27)

−1
2

∂

∂x
Et

6 +
√

3
2

∂

∂y
Et

6 + (α− αL − κ0 − iδ)Et
6

= iκ1

(
Et

1 + Et
5

)
+ iκ2

(
Et

2 + Et
4

)
+ (iκ3 − κ0) Et

3 (28)
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In Equations (23)–(28), as in the case of square lattice, δ is the
Bragg frequency deviation, given by (17), while κ1, κ2, and κ3 are
the coupling coefficients, defined by (6), and expressed in, e.g., [19].
These coefficients describe strength and direction of the coupling of
the waves, e.g., the coupling of Et

1 and Et
4 is described by κ3, coupling

of Et
1, Et

2, and Et
6 by κ1, and coupling of Et

1, Et
3, and Et

5 by κ2. In
Equations (23)–(28), there is an additional coefficient κ0 which, as in
the square lattice case, is responsible for surface emission losses [7, 22].

Solution of Equations (23)–(28) for the boundary conditions

Et
1

(
−L

2
, y

)
= 0, Et

2

(
−L

2
, y

)
= Et

2

(
x,−L

2

)
= 0,

Et
3

(
L

2
, y

)
= Et

3

(
x,−L

2

)
= 0, Et

4

(
L

2
, y

)
= 0,

Et
5

(
L

2
, y

)
= Et

5

(
x,

L

2

)
=0, Et

6

(
−L

2
, y

)
=Et

6

(
x,

L

2

)
= 0

(29)

defines structure eigenmodes at lasing threshold.

2.2.2. TE Polarization

In the triangular lattice photonic crystal cavity with TE polarization,
the coupling process involves waves satisfying the same condition
as it was stated in TM polarization case, i.e., (|G| = β0) [18],

Figure 4. A schematic cross sec-
tion of a triangular lattice pho-
tonic crystal laser active region,
where the six basic waves involved
in the coupling for TM polariza-
tion are shown.

Figure 5. A schematic cross sec-
tion of a triangular lattice pho-
tonic crystal laser active region,
where the six basic waves involved
in the coupling for TE polariza-
tion are shown.
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neglecting higher order Bloch modes. Six basic waves most significantly
contributing to coupling are depicted in Figure 5.

The magnetic field amplitudes h(G) (Equation (8)) in the
triangular lattice photonic crystal cavity are written as follows [18]:

Hz = Ht
1(x, y)e−iβ0x+Ht

2(x, y)e−i
β0
2

x−i
√

3β0
2

y+Ht
3(x, y)ei

β0
2

x−i
√

3β0
2

y

+Ht
4(x, y)eiβ0x+Ht

5(x, y)ei
β0
2

x+i
√

3β0
2

y+Ht
6(x, y)e−i

β0
2

x+i
√

3β0
2

y (30)

In Equation (43), Ht
i , i = 1 . . . 6, are the six magnetic

field amplitudes propagating in the symmetry directions (Figure 5).
Combining Equations (4), (30) and (2), and assuming slowly varying
magnetic field amplitudes, the coupled-wave equations for TE modes
in triangular lattice PC are obtained:

− ∂

∂x
Ht

1 + (α− αL − κ0 − iδ)Ht
1

= −i
κ1

2
(
Ht

2 + Ht
6

)
+ i

κ2

2
(
Ht

3 + Ht
5

)
+ (iκ3 − κ0) Ht

4 (31)

−1
2

∂

∂x
Ht

2 −
√

3
2

∂

∂y
Ht

2 + (α− αL − κ0 − iδ) Ht
2

= −i
κ1

2
(
Ht

1 + Ht
3

)
+ i

κ2

2
(
Ht

4 + Ht
6

)
+ (iκ3 − κ0) Ht

5 (32)

1
2

∂

∂x
Ht

3 −
√

3
2

∂

∂y
Ht

3 + (α− αL − κ0 − iδ) Ht
3

= −i
κ1

2
(
Ht

2 + Ht
4

)
+ i

κ2

2
(
Ht

1 + Ht
5

)
+ (iκ3 − κ0) Ht

6 (33)

∂

∂x
Ht

4 + (α− αL − κ0 − iδ)Ht
4

= −i
κ1

2
(
Ht

3 + Ht
5

)
+ i

κ2

2
(
Ht

2 + Ht
6

)
+ (iκ3 − κ0) Ht

1 (34)

1
2

∂

∂x
Ht

5 +
√

3
2

∂

∂y
Ht

5 + (α− αL − κ0 − iδ) Ht
5

= −i
κ1

2
(
Ht

4 + Ht
6

)
+ i

κ2

2
(
Ht

1 + Ht
3

)
+ (iκ3 − κ0) Ht

2 (35)

−1
2

∂

∂x
Ht

6 +
√

3
2

∂

∂y
Ht

6 + (α− αL − κ0 − iδ) Ht
6

= −i
κ1

2
(
Ht

1 + Ht
5

)
+ i

κ2

2
(
Ht

2 + Ht
4

)
+ (iκ3 − κ0) Ht

3 (36)

where the coupling coefficients κ1, κ2, and κ3 have the same physical
meaning as described in the TM polarization case. The boundary
conditions for the square region of PC with triangular symmetry are
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written as:

Ht
1

(
−L

2
, y

)
= 0, Ht

2

(
−L

2
, y

)
= Ht

2

(
x,−L

2

)
= 0,

Ht
3

(
L

2
, y

)
= Ht

3

(
x,−L

2

)
= 0, Ht

4

(
L

2
, y

)
= 0,

Ht
5

(
L

2
, y

)
=Ht

5

(
x,

L

2

)
=0, Ht

6

(
−L

2
, y

)
=Ht

6

(
x,

L

2

)
=0.

(37)

3. NUMERICAL ANALYSIS OF THE PC LASER
THRESHOLD OPERATION

3.1. Square Lattice

3.1.1. TM Polarization

In Figure 6, an enlarged area of a square lattice photonic crystal
dispersion curves for the first four modes (A, B, C, D) in the vicinity
of Γ point is shown. The plane wave method [23] was used to plot the
dispersion characteristic for the infinite two-dimensional PC structure
with circular holes εb = 9.8 arranged in square lattice with background
material εa = 12.0. The ratio of rods radius to lattice constant was set
to 0.24, and the number of plane waves was set at about 1024.

In Figure 6, each of the selected (A, B, C, D) points represents
a mode, characterized by Bragg frequency deviation δ, threshold gain

Figure 6. An enlarged area of a square lattice photonic crystal
dispersion curves for the first four modes in the vicinity of Γ point.
Square lattice, TM polarization.
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α, and threshold field distribution. These characteristic values were
calculated by the numerical solution of Equations (10)–(13). In order
to assign appropriate points A, B, C, D to the obtained numerical
values, it was necessary to use the analytic expressions for the Bragg
frequency deviation [15]:

δA = −2κ2 − κ3, δB,C = κ3, δD = 2κ2 − κ3. (38)

These expressions were obtained from Equations (10)–(13) where
no gain (α = 0), no loss (κ0 = 0, αL = 0), and no spatial dependence
of electric field amplitude were assumed.

Equations (10)–(13) were solved numerically for the wide range
of coupling coefficients (κ2, κ3), obtaining solutions ((δ, α, Es

l )
j)κ3i ,

where l = 1, 2, 3, 4, κ3i corresponds to subsequent values of coupling
coefficient for different modes j = A, B, C, D. Assigning numerical
values of δj to analytical solutions (38), the mode structure of 2D
square lattice PC laser with TM polarization has been obtained.

Figure 7 shows the field distributions |Es
1|2 + |Es

2|2 + |Es
3|2 + |Es

4|2
corresponding to modes: A — Figure 7(a), D — Figure 7(b), B, C
— Figures 7(b), (c). They were made for the normalized coupling
coefficients |κ2L| = 8, |κ3L| = 4 and filling factor f = 0.16.

(c) (d)

(a) (b)

Figure 7. Electromagnetic field distributions corresponding to (a) A,
(b) D, (c) B, and (d) C points from Figure 6, respectively.



Progress In Electromagnetics Research, Vol. 125, 2012 377

In Figure 8, the normalized threshold gain αL was plotted as
a function of Bragg frequency deviation δ, for various values of the
normalized coupling coefficient κ3L (which takes values from 0.01 to
50).

Figure 8 shows that increasing values of coupling coefficient
refer to the Bragg frequency deviation increment and threshold gain
decrement. Simultaneously for larger values of coupling coefficient, the
threshold gain tends to be similar values. It is also worth noting that
the threshold gain values for mode A are the lowest in vide range of
coupling coefficient.

Figure 8. The dependence of threshold gain versus Bragg frequency
deviation.

Figure 9. Mode A development for increasing values of coupling
coefficient.
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Figure 10. An enlarged area of a square lattice photonic crystal
dispersion curves for the first four modes in the vicinity of Γ point.
Square lattice, TE polarization.

Figure 9 illustrates mode A (shown in Figure 6) development on
the threshold gain α vs. coupling coefficient κ3 curve.

3.1.2. TE Polarization

In Figure 10, similar as in TM polarization case, an enlarged area of
a square lattice photonic crystal dispersion curves for the first four
modes (A, B, C, D) in the vicinity of Γ point is shown. The plane
wave method [23] was used with the same parameters as done for TM
polarization.

Each of the selected (A, B, C, D) points represents a mode,
characterized by Bragg frequency deviation δ, threshold gain α, and
threshold field distribution. These characteristic values were calculated
by the numerical solution of Equations (17)–(20). In order to assign
appropriate points A, B, C, D to the obtained numerical values, as for
TM polarization, it was necessary to use the analytic expressions for
the Bragg frequency deviation [17]:

δA = −8κ2
1

β0
− κ3, δB = −κ3, δC,D = −4κ2

1

β0
+ κ3. (39)

These expressions were obtained from Equations (17)–(20) where
no gain (α = 0), no loss (κ0 = 0, αL = 0), and no spatial dependence
of magnetic field amplitude were assumed.
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Equations (17)–(20) were solved numerically for the wide range
of coupling coefficients (κ1, κ3), obtaining solutions ((δ, α, Hs

l )j)κ3i ,
where l = 1, 3, 5, 7, κ3i corresponds to subsequent values of coupling
coefficient for different modes j = A, B, C, D. Assigning numerical
values of δj to analytical solutions (39), the mode structure of 2D
square lattice PC laser with TE polarization has been obtained.
Figure 11 shows the field distributions |Hs

1 |2 + |Hs
3 |2 + |Hs

5 |2 + |Hs
7 |2

corresponding to modes: A — Figure 11(a), B — Figure 11(b), C, D
— Figures 11(c), (d). They were made for the normalized coupling
coefficients |κ1L| = 10.96, |κ3L| = 4 and filling factor f = 0.16.

In Figure 12, the normalized threshold gain αL was plotted as
a function of Bragg frequency deviation δ, for various values of the
normalized coupling coefficient κ3L (which takes values from 0.01 to
50).

Figure 12 shows that increasing values of coupling coefficient refer
to the Bragg frequency deviation increment and the threshold gain
decrement. Simultaneously, for larger values of coupling coefficient the
threshold gain tends to be similar values.

Figure 13 depicts mode A (shown in Figure 10) development with
increasing values of coupling coefficient κ3 on the threshold gain α
curve. Compared to square lattice transverse magnetic polarization

(c) (d)

(a) (b)

Figure 11. Electromagnetic field distributions corresponding to (a)
A, (b) B, (c) C, and (d) D points from Figure 10, respectively.
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Figure 12. The dependence of threshold gain versus Bragg frequency
deviation.

Figure 13. Mode A development for increasing values of coupling
coefficient.

case, it is noticed that TE modes develop higher field confinement in
the structure for the greater difference of refractive indices (i.e., higher
values of coupling coefficient).

3.2. Triangular Lattice

3.2.1. TM Polarization

Similar as in case of square lattice, in Figure 14 an enlarged area of
a triangular lattice photonic crystal dispersion curves for the first six
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modes (A, B, C, D, E, F) in the vicinity of Γ point is shown. The plane
wave method [23] was used to plot the dispersion characteristic for
the infinite two-dimensional PC structure with circular holes εb = 9.8
arranged in triangular lattice with background material εa = 12.0. The
ratio of rods radius to lattice constant was set to 0.24, and the number
of plane waves to 1024.

In Figure 14, each of the selected (A, B, C, D, E, F) points
represents a mode, characterized by Bragg frequency deviation δ,
threshold gain α, and threshold field distribution. These characteristic
values were calculated by the numerical solution of Equations (23)–
(28). In order to assign appropriate points A, B, C, D, E, F to
the obtained numerical values, it was necessary to express the Bragg
frequency deviation through the coupling coefficients:

δA = −2κ1 − 2κ2 − κ3, δB,C = −κ1 + κ2 + κ3,

δD,E = κ1 + κ2 − κ3, δF = 2κ1 − 2κ2 + κ3.
(40)

Similar to previous cases, expressions (40) were obtained from
coupled-mode Equations (23)–(28) where no gain (α = 0), no loss
(κ0 = 0, αL = 0), and no spatial dependence of electric field amplitude
were assumed. Equations (23)–(28) were solved numerically for the
wide range of coupling coefficients (κ1, κ2, κ3), obtaining solutions
((δ, α, Et

k)
j)κ3i , where κ3i corresponds to subsequent values of coupling

coefficient for different modes j = A, B, C, D, E, F; k = 1 . . . 6.
Assigning numerical values of δj to the analytical solutions (40), the

Figure 14. An enlarged area of dispersion curves of photonic crystal
for the first six modes in the vicinity of Γ point. Triangular lattice,
TM polarization.
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mode structure of 2D triangular lattice PC laser with TM polarization

has been obtained. Figure 15 shows the field distributions
6∑

i=1
|Et

i |2

corresponding to the modes: A — Figure 15(a), F — Figure 15(b), B,
C — Figures 15(c), (d), D, E — Figures 15(e), (f). They were made
for the normalized coupling coefficients |κ1L| = 13.96, |κ2L| = 6.6,
|κ3L| = 4, and filling factor f = 0.16.

In Figure 16, the normalized threshold gain αL was plotted as
a function of Bragg frequency deviation δ, for various values of the
normalized coupling coefficient κ3L (which takes values from 0.01 to
50).

Figure 16 shows that increasing values of coupling coefficient refer

(c) (d)

(a) (b)

(e) (f)

Figure 15. Electromagnetic field distributions corresponding to (a) A,
(b) F, (c) B, (d) C, (e) D, and (f) E points from Figure 14, respectively.
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Figure 16. The dependence of threshold gain versus Bragg frequency
deviation.

to the Bragg frequency deviation increment and the threshold gain
decrement. Simultaneously, for larger values of coupling coefficient the
threshold gain tends to be similar values. The difference in the values
of degenerate modes’ threshold gains stem from numerical inaccuracy.

Similar as shown in square lattice case, here in Figure 17 mode A
(showed in Figure 14) development is shown on the threshold gain α
vs. coupling coefficient κ3 curve.

3.2.2. TE Polarization

In Figure 18, an enlarged area of a triangular lattice photonic crystal
dispersion curves for the first six modes (A, B, C, D, E, F) in the
vicinity of Γ point is shown. The plane wave method was used to plot
the dispersion characteristic with the same parameters as done for TM
polarization.

In Figure 18, each of the selected points (A, B, C, D, E, F)
represents a mode, characterized by Bragg frequency deviation δ,
threshold gain α, and threshold field distribution. These characteristic
values were calculated by the numerical solution of Equations (31)–
(36). In order to assign appropriate points A, B, C, D, E, F to the
obtained numerical values, it was necessary to express Bragg frequency
deviation through the coupling coefficients:

δA = −κ1 − κ2 + κ3, δB,C = −κ1

2
+

κ2

2
− κ3,

δD = κ1 − κ2 − κ3, δE,F =
κ1

2
+

κ2

2
+ κ3.

(41)
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Figure 17. Mode A development for increasing values of coupling
coefficient.

Figure 18. An enlarged area of dispersion curves of photonic crystal
for the first six modes in the vicinity of Γ point. Triangular lattice,
TE polarization.

Expressions (41) were obtained from coupled mode Equa-
tions (31)–(36) where no gain (α = 0), no loss (κ0 = 0, αL = 0), and no
spatial dependence of magnetic field amplitude were assumed. Equa-
tions (31)–(36) were solved numerically for the wide range of coupling
coefficients (κ1, κ2, κ3), obtaining solutions ((δ, α, Ht

k)
j)κ3i , where κ3i

corresponds to subsequent values of coupling coefficient for different
modes j = A, B, C, D, E, F; k = 1 . . . 6. Assigning numerical values of
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δj to the analytical solutions (41), the mode structure of 2D triangular
lattice PC laser with TE polarization has been obtained. Figure 19

shows the field distributions
6∑

i=1
|Ht

i |2 corresponding to the modes: A

— Figure 19(a), D — Figure 19(b), B, C — Figures 19(c), (d), E, F
— Figures 19(e), (f).

Plots in Figure 19 were made for the same normalized coupling
coefficients as in the case of TM polarization, i.e., |κ1L| = 13.96,
|κ2L| = 6.6, |κ3L| = 4, and filling factor f = 0.16.

In Figure 20, the normalized threshold gain αL was plotted as
a function of Bragg frequency deviation δ, for various values of the

(c) (d)

(a) (b)

(e) (f)

Figure 19. Electromagnetic field distributions corresponding to (a) A,
(b) D, (c) B, (d) C, (e) E, and (f) F points from Figure 18, respectively.
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Figure 20. The dependence of threshold gain versus Bragg frequency
deviation.

Figure 21. Mode A development for increasing values of coupling
coefficient.

normalized coupling coefficient κ3L (which takes values from 0.01 to
50).

Figure 20 shows that increasing values of coupling coefficient
refer to the Bragg frequency deviation increment and threshold gain
decrement. Simultaneously, for larger values of coupling coefficient the
threshold gain tends to be similar values. The difference in the values
of degenerate modes’ threshold gains stem from numerical inaccuracy.

Figure 21 illustrates mode A (showed in Figure 18) development
with increasing values of coupling coefficient κ3 on the threshold gain
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α curve. Compared to TM polarization case, as in square symmetry
structures, it can be noticed that TE modes develop higher field
confinement in the structure for the greater difference of refractive
indices (i.e., higher values of coupling coefficient). Thus in general it
can be stated that TM modes are better confined in the structures
with small refractive indices difference.

4. CONCLUSIONS

We have presented a coupled-wave analysis for square and triangular
lattices photonic crystal laser with TE and TM polarization. We used
coupled-mode equations to analyze PC structures in the wide range
of coupling coefficient values distinguishing basic modes. We have
plotted threshold characteristics showing lowest threshold modes and
their frequency deviations. We also illustrate the lowest frequency
mode development with increasing values of coupling coefficient and
point out that TM modes are most likely to occur in structures with
low dielectric constants contrast.

REFERENCES

1. Miyai, E., K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, and
S. Noda, “Lasers producing tailored beams,” Nature, Vol. 441,
946, 2006.

2. Sakai, K., E. Miyai, T. Sakaguchi, D. Ohnishi, T. Okano, and
S. Noda, “Lasing band-edge identification for a surface-emitting
photonic crystal laser,” IEEE J. Sel. Areas Commun., Vol. 23,
No. 7, 1335–1340, 2005.

3. Imada, M., S. Noda, A. Chutinan, T. Tokuda, M. Murata, and
G. Sasaki, “Coherent two-dimensional lasing action in surface-
emitting laser with triangular-lattice photonic crystal structure,”
Appl. Phys. Lett., Vol. 75, No. 3, 316–318, 1999.

4. Meier, M., A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher,
J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-
dimensional distributed feedback in photonic crystals,” Appl.
Phys. Lett., Vol. 74, No. 1, 7–9, 1999.

5. Noda, S., M. Yokoyama, M. Imada, A. Chutinan, and
M. Mochizuki, “Polarization mode control of two-dimensional
photonic crystal laser by unit cell structure design,” Science,
Vol. 293, No. 5532, 1123–1125, 2001.

6. Turnbull, G. A., P. Andrew, W. L. Barnes, and I. D. W. Samuel,
“Operating characteristics of a semiconducting polymer laser



388 Koba and Szczepanski

pumped by a microchip laser,” Appl. Phys. Lett., Vol. 82, No. 3,
313–315, 2003.

7. Vurgaftman, I. and J. R. Meyer, “Design optimization for high-
brightness surface-emitting photonic-crystal distributed-feedback
lasers,” IEEE J. Quantum Electron., Vol. 39, No. 6, 689–700, 2003.

8. Ohnishi, D., T. Okano, M. Imada, and S. Noda, “Room
temperature continuous wave operation of a surface-emitting two-
dimensional photonic crystal diode laser,” Opt. Express, Vol. 12,
No. 8, 1562–1568, 2004.

9. Matsubara, H., S. Yoshimoto, H. Saito, Y. Jianglin, Y. Tanaka,
and S. Noda, “GaN photonic-crystal surface-emitting laser at
blue-violet wavelengths,” Science, Vol. 319, No. 5862, 445–447,
2008.

10. Lu, T. C., S. W. Chen, L. F. Lin, T. T. Kao, C. C. Kao, P. Yu,
H. C. Kuo, and S. C. Wang, “GaN-based two-dimensional surface-
emitting photonic crystal lasers with AlN/GaN distributed Bragg
reflector,” Appl. Phys. Lett., Vol. 92, No. 1, 011129 1–3, 2008.

11. Kim, M., C. S. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy,
I. Vurgaftman, and J. R. Meyer, “Surface emitting photonic-
crystal distributed-feedback laser for the midinfrared,” Appl.
Phys. Lett., Vol. 88, No. 19, 191105 1–3, 2006.

12. Imada, M., A. Chutinan, S. Noda, and M. Mochizuki,
“Multidirectionally distributed feedback photonic crystal lasers,”
Phys. Rev. B , Vol. 65, No. 19, 195306 1–8, 2002.

13. Yokoyama, M. and S. Noda, “Finite-difference time-domain
simulation of two-dimensional photonic crystal surface-emitting
laser,” Opt. Express, Vol. 13, No. 8, 2869–2880, 2005.

14. Plihal, M. and A. A. Maradudin, “Photonic band structure of
two-dimensional systems: The triangular lattice,” Phys. Rev. B ,
Vol. 44, No. 16, 8565–8571, 1991.

15. Sakai, K., E. Miyai, and S. Noda, “Coupled-wave model for
square-lattice two-dimensional photonic crystal with transverse-
electric-like mode,” Appl. Phys. Lett., Vol. 89, No. 2, 021101 1–3,
2006.

16. Sakai, K., E. Miyai, and S. Noda, “Coupled-wave theory for
square-lattice photonic crystal lasers with TE polarization,” IEEE
J. Quantum Electron., Vol. 46, No. 5, 788–795, 2010.

17. Sakai, K., E. Miyai, and S. Noda, “Two-dimensional coupled
wave theory for square-lattice photonic-crystal lasers with TM-
polarization,” Opt. Express, Vol. 15, 3981–3990, 2007.



Progress In Electromagnetics Research, Vol. 125, 2012 389

18. Sakai, K., J. Yue, and S. Noda, “Coupled-wave model
for triangular-lattice photonic crystal with transverse electric
polarization,” Opt. Express, Vol. 16, No. 9, 6033–6040, 2008.

19. Koba, M., P. Szczepanski, and T. Kossek, “Nonlinear operation of
a 2D triangular lattice photonic crystal laser,” IEEE J. Quantum
Electron., Vol. 47, No. 1, 13–19, 2011.

20. Scamarcio, G., F. Capasso, C. Sirtori, J. Faist, A. L. Hutchinson,
D. L. Sivco, and A. Y. Cho, “High-power infrared (8-micrometer
wavelength) superlattice lasers,” Science, Vol. 276, No. 5313, 773–
776, 1997.

21. Kogelnik, H., “Coupled wave theory for thick hologram gratings,”
Bell Syst. Tech. J., Vol. 48, 2909–2947, 1969.

22. Kazarinov, R. and C. Henry, “Second-order distributed feedback
lasers with mode selection provided by first-order radiation
losses,” IEEE J. Quantum Electron., Vol. 21, No. 2, 144–150, 1985.

23. Johnson, S. and J. Joannopoulos, “Block-iterative frequency-
domain methods for Maxwell’s equations in a planewave basis,”
Opt. Express, Vol. 8, No. 10, 173–190, 2001.

24. Liang, Y., C. Peng, K. Sakai, S. Iwahashi, and S. Noda, “Three-
dimensional coupled-wave model for square-lattice photonic
crystal lasers with transverse electric polarization: A general
approach,” Phys. Rev. B , Vol. 84, No. 19, 195119 1–11, 2011.

25. Peng, C., Y. Liang, K. Sakai, S. Iwahashi, and S. Noda, “Coupled-
wave analysis for photonic-crystal surface-emitting lasers on air
holes with arbitrary sidewalls,” Opt. Express, Vol. 19, No. 24,
24672–24686, 2011.


