Vol. 125
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-02-22
Ultra Wideband Wave-Based Linear Inversion in Lossless Ladder Networks
By
Progress In Electromagnetics Research, Vol. 125, 97-118, 2012
Abstract
A wave-based inversion algorithm for the recovery of deviation in he values of elements of discrete lossless inductance-capacitance and capacitance-inductance ladder networks from their nominal values is formulated. The algorithm uses ultra wideband source excitation over the frequency range where forward and backward voltage and current waves propagate along the network. Employing a weak type scattering formulation renders the voltage wave reflection coefficient to be a Z transform of the sequence of perturbation in the value of the elements. Inversion of the reflected date from the transformed domain to the spatial domain by Fourier type integration yields the element's perturbations and consequently, the actual elements of the network. Demonstrations of the algorithm performance on several test cases show its efficacy as a non-destructive testing tool.
Citation
Amir Shlivinski, "Ultra Wideband Wave-Based Linear Inversion in Lossless Ladder Networks," Progress In Electromagnetics Research, Vol. 125, 97-118, 2012.
doi:10.2528/PIER12010804
References

1. Ramo, J. S. and T. V. Duzer, Fields and Waves in Communication Electronics, 3rd Ed., John Wiley & Sons, Inc., 1994.

2. Collin, R. E., Foundations for Microwave Engineering, 2nd Ed., IEEE Press Series on Electromagnetic Wave Theory, IEEE Press, 2001.

3. Caloz, C. and T. Itho, Electromagnetic Metamaterials, Transmission Line Theory and Microwave Applications, IEEE Press, Hoboken, New Jersey, 2006.

4. Jaulent, M., "The inverse scattering problem for lcrg transmission lines," J. Math. Phys., Vol. 23, No. 12, 2286-2290, 1982.
doi:10.1063/1.525307

5. Zhang, Q., M. Sorine, and M. Admane, "Inverse scattering for soft fault diagnosis in electric transmission lines," IEEE Transactions on Antennas and Propagation, Vol. 59, 141-148, Jan. 2011.
doi:10.1109/TAP.2010.2090462

6. Tang, H. and Q. Zhang, "An inverse scattering approach to soft fault diagnosis in lossy electric transmission lines," IEEE Transactions on Antennas and Propagation, Vol. 59, 3730-3737, Oct. 2011.

7. Bruckstein, A. M. and T. Kailath, "Inverse scattering for discrete transmissionline models," SIAM Review, Vol. 29, No. 3, 359-389, 1987.
doi:10.1137/1029075

8. Frolik, J. and A. Yagle, "Forward and inverse scattering for discrete layered lossy and absorbing media," IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, Vol. 44, 710-722, Sep. 1997.
doi:10.1109/82.624998

9. Case, K. M. and M. Kac, "A discrete version of the inverse scattering problem," J. Math. Phys., Vol. 14, No. 5, 594-603, 1973.
doi:10.1063/1.1666364

10. Berryman, J. G. and R. R. Greene, "Discrete inverse methods for elastic waves in layered media," Geophysics, Vol. 45, No. 2, 213-233, 1980.
doi:10.1190/1.1441078

11. Godin, Y. A. and B. Vainberg, "A simple method for solving the inverse scattering problem for the difference helmholtz equation," Inverse Problems, Vol. 24, No. 2, 025007, 2008.
doi:10.1088/0266-5611/24/2/025007

12. Noda, S., "Wave propagation and reflection on the ladder-type circuit," Electrical Engineering in Japan, Vol. 130, No. 3, 9-18, 2000.
doi:10.1002/(SICI)1520-6416(200002)130:3<9::AID-EEJ2>3.0.CO;2-S

13. Ucak, C. and K. Yegin, "Understanding the behaviour of infinite ladder circuits," European Journal of Physics, Vol. 29, No. 6, 1201, 2008.
doi:10.1088/0143-0807/29/6/009

14. Parthasarathy, P. R. and S. Feldman, "On an inverse problem in cauer networks," Inverse Problems, Vol. 16, No. 1, 49, 2000.
doi:10.1088/0266-5611/16/1/305

15. Dana, S. and D. Patranabis, "Single shunt fault diagnosis in ladder structures 22 Shlivinski with a new series of numbers," Circuits, Devices and Systems, IEE Proceedings G, Vol. 138, 38-44, Feb. 1991.
doi:10.1049/ip-g-2.1991.0008

16. Doshi, K., "Discrete inverse scattering," University of California, Santa Barbara, 2008.

17. Desoer, C. A. and E. S. Kuh, Basic Circuit Theory, McGraw-Hill, 1969.

18. Jirari, A., Second-order Sturm-Liouville Difference Equations and Orthogonal Polynomials, Memoirs of the American Mathematical Society, American Mathematical Society, 1995.

19. Felsen, L. B. and N. Marcuvitz, "Radiation and Scattering of Waves," IEEE Press Series on Electromagnetic Waves, The Institute of Electrical and Electronics Engineers, New York, 1994.

20. Elaydi, S. N., An Introduction to Difference Equations, Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1996.

21. Langenberg, K. J., "Linear scalar inverse scattering," Scattering: Scattering and Inverse Scattering in Pure and Applied Science, 121-141, Academic Press, London, 2002.

22. Tsihrintzis, G. and A. Devaney, "Higher-order (nonlinear) diffraction tomography: Reconstruction algorithms and computer simulation," Processing of IEEE Transactions on Image, Vol. 9, 1572, Sep. 2000.

23. Tsihrintzis, G. and A. Devaney, "Higher order (nonlinear) di®raction tomography: Inversion of the Rytov series," IEEE Transactions on Information Theory, Vol. 46, 1748-1761, Aug. 2000.
doi:10.1109/18.857788

24. Marks, D. L., "A family of approximations spanning the Born and Rytov scattering series," Opt. Express, Vol. 14, 8848, Sep. 2006.
doi:10.1364/OE.14.008837

25. Markel, V. A., J. A. O'Sullivan, and J. C. Schotland, "Inverse problem in optical diffusion tomography. IV. Nonlinear inversion formulas," J. Opt. Soc. Am. A, Vol. 20, 903-912, May 2003.
doi:10.1364/JOSAA.20.000903

26. Oppenheim, A. V., R. W. Schafer, and J. R. Buck, Discrete-Time Signal Processing, 2nd Edition, Prentice-Hall Signal Processing Series, Prentice Hall, 1999.

27. Devaney, A. J., "A filtered backpropagation algorithm for diffraction tomography," Ultrasonic Imaging, Vol. 4, No. 4, 336-350, 1982.
doi:10.1016/0161-7346(82)90017-7