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Abstract—A wave-based inversion algorithm for the recovery of
deviation in the values of elements of discrete lossless inductance-
capacitance and capacitance-inductance ladder networks from their
nominal values is formulated. The algorithm uses ultra wideband
source excitation over the frequency range where forward and backward
voltage and current waves propagate along the network. Employing a
weak type scattering formulation renders the voltage wave reflection
coefficient to be a Z transform of the sequence of perturbation in
the value of the elements. Inversion of the reflected date from
the transformed domain to the spatial domain by Fourier type
integration yields the element’s perturbations and consequently, the
actual elements of the network. Demonstrations of the algorithm
performance on several test cases show its efficacy as a non-destructive
testing tool.

1. INTRODUCTION

Discrete types of periodic one-dimensional ladder networks are
traditionally used in textbooks to study continuous transmission lines
(TLs) [1, 2] or to model many physical phenomena. However, using
appropriate chosen parameters, these types of structures, made either
of lumped elements or of distributed elements that, to an extent, model
lumped elements, can be realized to meet some prescribed properties.
The renewed attention to applications of these types of networks as
guided structures supporting the propagation of voltage and current
waves is due to the progress in miniaturizing circuit elements and the
possibility of assembling metamaterial TLs with desired properties
(see, e.g., [3]). An additional issue of interest that apply to ladder
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structures as propagation media is the identification of, for example,
faulty circuit elements that deviate from nominal values by applying
non-destructive wave-based techniques. One such technique for these
inherently discrete and therefore frequency dispersive structures is
derived below within the framework of the weak scattering.

Although inversion in one-dimensional continuous nonuniform
TLs to recover structural parameters [inductance (L), capacitance
(C), resistance (R) and conductance (G)] was studied in the past
(see, e.g., [4]), the subject has generated renewed interest in recent
years [5, 6]. Inversion in discrete types of structures, where cascaded
continuos TL sections of finite length are set consecutively is one aspect
of discrete inversion (see in [7, 8]). Discrete inversion is also applicable
to continuous medium that is spatially discretized or, alternatively, in
which the spatial domain is set as a grid of lattice points. The inversion
of discretized one-dimensional Schrödinger type equation can be found
in, for example, [9], while the inversion of reflected waves in stratified
elastic media for geophysics applications is given in [10]. A more
recent inversion of a discrete Helmholtz equation for the recovery of
the boundary impedance in a two-dimensional domain appears in [11].
An additional type of discrete inversion is for ladder-type networks,
which are structures that are a-priori spatially discrete. A typical
ladder network is assembled by series and parallel branches arranged in
cascading order (Fig. 1). The elements on each of the branches can be
either inductors, capacitors, resistors, or any combination of the three
such to achieve wave propagation characteristics (see, e.g., [12, 13]).
Inversion in an RC ladder-type structure has been studied to recover
their parameters (see e.g., [14] which uses the layout of the poles and
zero of the impedance) or to identify a single capacitance fault in RLC
ladder networks [15]. Inversion in LC† type of ladder network where
the capacitance elements are known and equal with a “peeling” type
algorithm was carried out, recently, in [16].

In the present paper an inversion in “long” LC or CL lossless
ladder networks is presented within a linearized framework for the
recovery of the perturbations in the elements values relative to their
nominal background values. To that end, the formulation uses ultra
wideband excitation and decomposition of the nodal voltages into
a combination of forward and backward propagating voltage waves.
The inversion algorithm employes the exact Kirchhoff’s current and
voltage circuit relations to formulate an exact spatially discrete type
of homogeneous Helmholtz equation in an inhomogeneous medium
† In an LC network, the series elements are inductors while the parallel elements are
capacitors. In contrast, in CL networks, the series elements are capacitors while the parallel
elements are inductors.
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(network). Reformulation of the homogeneous Helmholtz equation as
an inhomogeneous equation in a homogeneous background medium
with induced driving sources yields a simple relation for the scattered
waves in terms of the Green’s function of the background medium.
Though simple, the expression for the scattered waves is nonlinear
in the unknown medium parameters. A linearized expression of the
scattered voltage wave is obtained by using weak scattering conditions
(small magnitude of the perturbations in the elements’ values over
those of the background medium). This linearization renders the
reflection coefficient (back-scattered wave) as a filtered version of the
Z transform of the sequence of perturbations that is evaluated at the
frequency-dependent propagation constant. Exciting the network over
a broad frequency range (the network’s pass-band) leads to a tailing of
the transformed domain (the “propagation constant” domain) with
reflection-type data. Inversion of the data from the transformed
domain to the spatial domain by a Fourier type integration yields
the sequence of unknown perturbations. Thus implying that the
formulation is of a direct inversion type (not iterative).

The paper is organized as follows. Problem formulation is outlined
in Sec. 2, with the derivation of the corresponding Helmholtz equation
in Sec. 2.1, and the wave propagation characteristics in the background
medium are given in Sec. 2.2 (and in Appendix A) followed by the
formulation of the scattered voltage wave within the weak scattering
approximation. A discussion on the range of validity of the weak
scattering approximation is given in Appendix B. The linear inversion
is presented in Sec. 3 followed by a demonstration of the efficacy of
the inversion algorithm for LC and CL types of ladder networks in
Sec. 4. The discussion concludes with a summary in Sec. 5 with
additional concluding remarks regarding the benefits in using the
presented algorithm.

In the following discussion: V and I represent nodal voltage and
branch currents, respectively, Z and Y represent series impedance and
parallel admittance, respectively. The radian frequency is denoted by
ω, with ejωt (j =

√−1) the time dependence that is suppressed in the
expressions below.

2. LAYOUT AND PROBLEM FORMULATION

Let’s assume that the physical medium is of an electrical lossless
network that is composed of N frequency dependent cascading “ZYn”,
n = 1, . . . , N sections as depicted in Fig. 1 that are generally unknown.
Each “ZYn” section composed of a series impedance Zn(ω) = znζ(ω)
and a parallel admittance Yn(ω) = ynη(ω), where ζ(ω) and η(ω)
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Figure 1. Layout of the ladder network.

are, generally, known frequency dependent functions and {zn, yn|n =
1, . . . , N} are generally unknown real parameters that correspond to
the electrical values of the elements. The number of cascading sections
N need not be known; moreover, it may also be that N → ∞.
It is assumed that each “ZYn” constitutes an unknown deviation
(perturbation) from a known background section “Z̄Ȳ ”. A background
section “Z̄Ȳ ” is composed of a series impedance Z̄(ω) = z̄ζ(ω) in
conjunction with a shunt admittance Ȳ (ω) = ȳη(ω) (z̄, ȳ are known).
Since the frequency dependence of Zn(ω) and Z̄(ω) is ζ(ω) and that
of Yn(ω) and Ȳ (ω) is η(ω), the deviations are values of {zn} and
{yn} from the background values z̄ and ȳ, respectively‡. For the
sake of simplicity, assume also that (i) the 1st and Nth sections
“ZY ′′

1 = “ZYN” = “Z̄Ȳ ”, and (ii) the network is terminated on its
lefthand side (node 0) by a voltage source Eg(ω) with input impedance
Zg(ω) = Z∞(ω)− Z̄(ω) and on its right-hand side (node N) by a load
ZL(ω) = Z∞(ω), where Z∞(ω) is the terminal impedance of such an
infinite network composed of background “Z̄Ȳ ” sections. Note that
in such a background network, Z∞ is the solution of the following
relation (see in Fig. 1) Zn> = Z̄ + (Z−1

n+1> + Ȳ )−1, upon noting that
Zn> = Z∞ for n = 0, 1, . . . , N . These settings ensure matching of the
network at its two terminals, furthermore, the background network
appears as equivalent to a uniform infinite network nodes 1 ≤ n < N .
Additionally, the source’s excitation frequency ω is constrained to the
range ω ∈ Ω = (ωmin, ωmax), where Ω is the range of frequencies where
the periodic unperturbed (background) network supports propagation
of voltage and current waves (see the discussion in Sec. 2.2).

Following the formulation of the network’s layout, the inverse
‡ Note, for example, for a ladder network section composed of a series inductor and a shunt
capacitor, ζ(ω) = η(ω) = jω, while for a section that is composed of a series capacitor and
a shunt inductor, ζ(ω) = η(ω) = 1/jω. In both cases {zn} with z and {yn} with y are the
inductance/capacitance and the capacitance/inductance, respectively.
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problem is stated as follows: For the ladder network as in Fig. 1 with
known background sections “Z̄Ȳ ”, find the set of perturbed unknown
parameters {zn, yn|n = 2, . . . , N − 1} and generally unknown N by
using voltage measurements at terminal n = 0 carried out over a broad
sweep of the source frequencies ω ∈ Ω.

A wave-based solution to the inversion problems, as stated above,
can be obtained by formulating the network’s nodal voltages in terms
of waves propagating along the network. This is carried out by
using Kirchhoff’s current and voltage laws [17] to give a discrete
Helmholtz equation (the frequency domain counterpart of the discrete
wave equation) that governs forward and backward wave propagation.
Since a wave-based solution is sought, it is convenient to refer to
each perturbed section as a “scatterer” and the perturbation in the
voltages along the network over the quiescent, background voltages
as “scattered voltage”. This paradigm is adopted in the following
discussion of the problem’s mathematical formulation.

In the rest of the paper, explicit indication of ω is omitted from
all the frequency-dependent parameters.

2.1. Circuit Relations and the Helmholtz Equation

The mathematical formulation of the problem begins with the circuit’s
Kirchhoff laws [17]. To this end, a current In is defined as flowing
through the Z ′nth element in the direction of node n, and a voltage
Vn is defined as the voltage across the Y ′

nth element (see Fig. 2).
Consequently, the following two iterative equations can be formulated:

Vn−1 = InZn + Vn, In = VnYn + In+1. (1)

Representing In and In+1 in terms of the three nodal voltages Vn−1,
Vn, and Vn+1, gives rise to the following discrete Helmholtz equation of
the ladder network:
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Figure 2. Network layout with the currents and voltages notations at
the Network’s terminals.
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with additional boundary conditions at the source and load terminals.
Equation (2) governs the propagation of voltage waves on a general
ladder network. Note that Equation (2) can be rearranged in the form
of a second-order Sturm-Liouville difference equation [18], whence it
may be recognized as the discrete analog of a Helmholtz equation in
a continuous inhomogeneous medium when both the permittivity and
permeability can vary in space [19].

Equation (2) is a homogeneous equation in an inhomogeneous
medium. Rearranging it as an inhomogeneous equation in a
homogeneous medium with additional induced sources simplifies its use
for the inversion problem. To that end, 1/Z̄ is added to and subtracted
from each inverse impedance term in Equation (2), and similarly, Ȳ
is added to and subtracted from each admittance term followed by
multiplication by Z̄ and rearrangement, to give

Vn+1−[2+ξ]Vn+Vn−1 = δ̄zn+1Vn+1−
[
δ̄zn+1+δ̄zn+ξδ̄yn

]
Vn+δ̄znVn−1. (3a)

where ξ = Z̄Ȳ = z̄ȳη(ω)ζ(ω), and the relative perturbations are
defined by

δ̄zn = 1− Z̄

Zn
= 1− z̄

zn
, δ̄yn = 1− Yn

Ȳ
= 1− yn

ȳ
. (3b)

For simplicity, let us also define the series {δ̄p}, which is composed by
interlacing values of δ̄zn and δ̄yn , such that

δ̄2p−1 = δ̄zp , δ̄2p = δ̄yp . (3c)

Thus giving the source term on the righthand side of Equation (3a) to
be read as

S(δ̄n, Vn) = δ̄2n+1Vn+1−
[
δ̄2n+1 + δ̄2n−1 + ξδ̄2n

]
Vn + δ̄2n−1Vn−1. (3d)

The lefthand side of Equation (3a) is a difference form that corresponds
to that of a homogeneous background ladder network (“Z̄Ȳ ” sections),
whereas the actual inhomogeneity is represented by the induced
(voltage-dependent) sources on the righthand side. These sources
result due to the scatterers contrast (perturbation in the circuit
elements) with the background.

A scattered wave formulation is obtained by the the following
decomposition:

Vn = V i
n + V s

n (4)

where V i
n is the incident voltage wave propagating in the unperturbed

background and homogeneous network while V s
n is the scattered voltage

propagating in the network due to the inhomogeneity, {zn, yn|n =
2, . . . , N − 1}, of the actual network. By its definition, the
incident voltage satisfies the homogeneous Helmholtz equation in the
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unperturbed background network, (compare Equation (3a)): V i
n+1 −

[2 + ξ] V i
n +V i

n−1 = 0 with the boundary condition V i
0 = Eg Z0>[Z0> +

Zg]−1, where Z0> = Z∞, thus rendering Equation (3a)

V s
n+1 − [2 + ξ] V s

n + V s
n−1 = S(δ̄n, Vn), (5)

It is noted that Equation (5) is arranged such that the difference
form on the left is associated with the discrete Helmholtz equation
of the unperturbed background network while the induced sources due
to the perturbations are grouped to the right. The solution for the
scattered voltage V s

n can now be presented in terms of the characteristic
properties of the background network. To that end, the characteristics
of voltage wave propagation on such a background network is discussed
next, followed by a solution of Equation (5) in Sec. 2.3.

2.2. Wave Propagation in the Background Network

Voltage wave propagation along a terminally matched background
medium (network) characterized by “Z̄Ȳ ” sections is summarized here
in terms of wave propagation along infinite networks (for additional
discussion the reader is referred to Appendix A). The applicability
of infinite network condition is possible since the matching boundary
conditions at the network terminals Z1< = ZN> = Z∞ render
the behavior of any voltage wave-mode propagation as if it were
propagating along an infinite network. Voltage wave propagation along
an infinite network is characterized by the two eigen-solution of the
second order homogeneous difference Helmholtz equation (see, e.g.,
the lefthand side of Equation (5)):

V (1)
n = αn, V (2)

n = α−n (6a)

where α is the discrete “propagation constant” that is given by

α = ejφ =
{

α1, if φ′1 > 0,

α2, if φ′2 > 0.
(6b)

with
α1,2 =

1
2

[
(2 + ξ)± j

√
4− (2 + ξ)2

]
, (6c)

or alternatively by α1,2 = ejφ1,2 , where tanφ1,2 = ±
√

4− (2 + ξ)2/(2+
ξ), the indexes 1, 2 correspond to the upper and lower ± signs,
respectively. The choice between α1,2 in (6b) ensures that the energy
flow is directed from the source (at terminal “0”) to the actual network,
see the additional discussion in Appendix A.

Wave propagation along the network occurs whenever a
progressive phase is accumulated as the index n monotonically changes
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(n is the spatial index). Thus, it requires Im{α1,2} 6= 0, which leads
to 4− (2 + ξ(ω))2 > 0, giving the system of inequalities:

−4 < ξ(ω) < 0. (7)

Solving Equation (7) for ω gives the range of excitation frequencies,
the pass-band, Ω = (ωmin, ωmax), where waves can propagate along the
discrete structure, with ωmin and ωmax the lower and upper cut-off
frequencies, respectively. An ω ∈ Ω implies by Equation (6c) that
|α1,2| = 1, and α1 = α∗2 = 1/α2 (∗ denotes complex conjugation).

Having defined the two wave-modes in (6) and the frequency pass-
band via(7) it can be noted that V

(1)
n is a voltage wave propagation in

the backward (left, “negative”) direction that satisfies the boundary
conditions at n → −∞ and V

(2)
n is a voltage wave propagating in

the forward (right, “positive”) direction that satisfies the boundary
condition at n → ∞. Consequently, the background medium Green’s
function is given by (see in [18, Theorem 2.3.8, 20]),

Gn,m = −α−|n−m|

α− α−1
. (8)

Finally, with α given by Equation (6b), it follows that Z∞ = (α−1)Ȳ −1

where it is the solution of Zn> = Z̄ + (Z−1
n+1> + Ȳ )−1 with Zn> = Z∞

for n = 0, 1, . . . , N in the background network [12, 13].

2.3. The Scattered Voltage Wave

The scattered voltage wave can now be obtained from Equation (5)
using discrete convolution with the Green’s function of the background
medium Equation (8) to yield

V s
n =

∑
m

Gn,mS(δ̄m, Vm), (9)

with m = 1, 2, . . . , N . Note that Equation (9) is nonlinear in
the perturbation sequence {δ̄m} since it appears explicitly in S and
implicitly via Vn = V i

n + V s
n , which also depend on it. In the following

discussion, a linearized solution to Equation (9) is sought within the
weak scattering approximation (Born type approximation [21]).

The weak scattering linearization of Equation (9) makes use of
the following assumption: since the perturbations {δ̄zn , δ̄yn} are small
(“weak”) compared to z and y, the scattered voltage V s

n is also a
small perturbation, to first order, in V i

n (|V s
n | ¿ |V i

n|), indicated by
δ̄Vn . Inserting the decomposition of Equation (4) into Equation (9),
noting via Equation (3d) that S(δ̄m, Vm) = S(δ̄m, V i

m) + S(δ̄m, δ̄Vm)
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and retaining explicitly only first order perturbation terms, then the
scattered wave becomes:

V s
n =

∑
m

Gn,mS(δ̄m, V i
m) +O(δ̄2) (10)

where the source term S(δ̄m, V i
m) is linear in {δ̄m}, and O(δ̄2) ∼

S(δ̄m, δ̄Vm) represents the higher order terms of at least second order
in the perturbations. For further treatment of Equation (10), the weak
nonlinear O(δ̄2) term is neglected, thus rendering the equation linear
in {δ̄m}. A discussion on the range of validity of the weak scattering
solution is given in Appendix B. Note that an exact representation of
the higher order terms that extends the range of validity of such weak
scattering approximations can be obtained by expanding V s

n into a
series of higher order perturbed contributions within the perturbation
theory framework as was carried out for continuous media in [22–24]
or, alternatively, as in [25].

The nodal voltage measured at node “0” records the backward
propagating component of the scattered wave due to the excitation at
node “0”. Recalling the discussion in Sec. 2.2 that V i

n = V i
0α−n is

the voltage wave propagating in the background network in seemingly
infinite network conditions (“matched” where Zn> = Zn+1> = ZN =
Z∞) with V i

0 = Z∞ [Zg + Z∞]−1 Eg. Inserting V i
n into Equation (9)

and noting that m > 0, the measured component of the scattered
wave is given by

V s
0 = V i

0

α− 1
α + 1

{∑
m

α−2mδ̄2m +
∑
m

α−(2m+1)δ̄2m+1

}
=V i

0Γ0 (11a)

Γ0 =
α− 1
α + 1

δ̃(α), (11b)

where Γ = V s
0 /V i

0 is voltage reflection coefficient, and δ̃(α) was
obtained by combining the two summations in Equation (11a) into
one summation to give

δ̃(α) =
∑

p

α−pδ̄p, p = 0, 1, . . . , δ̄0 = 0. (11c)

It is readily noted that δ̃(α) is the Z transform (see in [26] of the
sequence δ̄ evaluated on the complex point α(ω). As we have seen
above, in the propagation regime [see, e.g., Equation (7)], where
α = ejφ with φ ∈ (0, π), it follows that δ̃(α) may also be recognized
as the discrete-index-continuous-spectral-parameter Fourier transform
(known also as discrete time Fourier transform, DTFT [26]).
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Equation (11b) establishes that within the weak scattering
approximation, the reflection coefficient is obtained as a mapping (Z-
transform) between the discrete domain of sequences to the domain of
frequency dependent propagation constants (the “spectral domain”).
Moreover, in the transformed complex domain (“α” domain), the
reflection coefficient is mapped into a circular arc of radius |α| about
the origin and angle |φ(ωmax)− φ(ωmin)|.

Having formulated the model for the scattered voltage wave V s
0 or,

correspondingly, the reflection coefficient Γ0 as in Equation (11), the
next step is the introduction of the inversion algorithm for the recovery
of δ̄ in Sec. 3.

3. LINEAR INVERSION

Performing broad frequency ranged voltage measurement at terminal
“0” for ω ∈ Ω gives V0, from which the scattered voltage wave V s

0 can
be obtained and the reflection coefficient Γ0 = (V0/V i

0 ) − 1 = V s
0 /V i

0 .
Assuming weak scattering conditions, Equation (11b) provides a linear
model for the reflection coefficients as a function of the network’s
parameters in terms of a Z transform mapping (or the DTFT) of
the interlaced perturbation series. Thus, inverting δ̃(α) with α =
α(ξ(ω)) from the “spectral (propagation constant) domain” to the
index domain recovers the perturbation series {δ̄n} and {zn, yn}. To
this end, following Equation (11b), denotes

G =
α + 1
α− 1

Γ0 = −j cot
(

φ

2

)
Γ0 $ δ̃(α), (12a)

where $ indicates equality of the measured quantity (Γ0) with the
model (δ̃) subject to the model assumptions and the range of validity
of the parameters as discussed in Sec. 2. Note that, Equation (12a)
suggests that G is a filtered version of the actual reflection coefficient.
The measured data is known over the frequency span Ω that
corresponds to ξ ∈ (−4, 0), and consequently, φ ∈ (0, π). Define an
integration kernel J(ω)ejmφ, with m = 1, 2, . . . and J(ω) = φ′ = ∂φ/∂ω
(see the discussion on φ′ in Sec. 2.2) is a continuos function. Multiply
Equation (12a) by the integration kernel and perform integration over
the whole frequency band Ω,∫ ωmax

ωmin

dω G(ω)J(ω)ejmφ $
∫ ωmax

ωmin

dω δ̃(ω)J(ω)ejmφ(ω). (12b)

Next, focusing on the righthand side of the integration and changing
the integration variable from ω to φ, we note that (i) dφ = dω φ′; (ii)
for Ω that occupies whole of the available wave propagation frequency
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band, the range of φ is given by φ(ωmin) → 0 and φ(ωmax) → π or
φ(ωmin) → π and φ(ωmax) → 0∫ ωmax

ωmin

dωδ̃(ω)J(ω)ejmφ(ω) =
∫ ωmax

ωmin

dωφ′(ω)δ̃(ω)ejmφ(ω)

=
∫ π

0
dφ δ̃(φ)ejmφ. (12c)

It is readily noted that in view of the inverse DTFT [26], the rightmost
integration is recognized as the analytic continuation of the series δ̄m

1
π

∫ π

0
dφ δ̃(φ)ejmφ = δ̄m + jhm ~ δ̄m (12d)

where ~ is the discrete convolution operation and

hm =
{

0, m even
2

mπ , m odd.
(12e)

is the discrete Hilbert transform kernel [26]. Recalling that {δ̄m}
is a real sequence, the real part of the integral indeed yields the
unknown perturbation sequence. Finally, combining Equation (12b)
with Equation (12d) yields the inversion formula for obtaining the
unknown perturbations

δ̄m $ 1
π

Re
∫ ωmax

ωmin

dω G(ω)φ′(ω)ejmφ, m = 1, 2, . . . . (13)

Equation (13) is the final inversion expression. To this end, it
relates the filtered version of the measured reflected data G [see the
discussion at the beginning of this section and Equation (12a)] with
the perturbation series {δ̄m} (or its recovered version) by a Fourier
type integration.

It should be noted once G was calculated, δ̄m can readily
be calculated by performing the integration in Equation (13) for
any value of m. Inserting the recovered {δ̄m} into Equation (3c)
with Equation (3b) yields the actual perturbations {δ̄zm , δ̄ym} in
the elements values. Finally, It can be argued that subject to the
weak scattering assumption, δ̄m is recovered as zero whenever the
corresponding zn or yn equals the background parameters z̄ and ȳ,
respectively, which can lead to termination of the algorithm at high
enough m and the identification of N . These observations conclude
the inversion formulation.

4. EXAMPLE

This section presents several examples of the use of the imaging
algorithm of Equation (13) for different types of ladder networks and
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different perturbations in the lumped element values (i.e., different
scatterers) over the nominal background network.

In the examples below, the background network is composed of
inductors and capacitors in different arrangements (LC or CL type
of sections), with inductance L̄ = 4/5H and capacitance C̄ = 3/8F .
The excitation voltage source is assumed to be constant Eg = 1 for all
ω ∈ Ω. The reflection data that is used as an input to the imaging
algorithm, i.e., scattered voltage V s

0 or reflection coefficient Γ0, is
generated synthetically by the following procedure:

(i) Assume there is given a set of actual inductors and capacitors
{Ln, Cn| 2 ≤ n ≤ N − 1} such that some or all of its elements
differ (perturbed) from the nominal background elements L̄ and
C̄.

(ii) The input impedance, Zin (at node “0”), is given by the iterative
calculation (see Fig. 1), Zn> = Zn +

[
Z−1

n+1> + Yn

]−1, with ZN =
Z∞, n = N−1, N−2, . . . , 0 and Zin = Z0>, where the propagation
constant α was set according to the discussion in Sec. 2.2.

(iii) The actual, perturbed node “0” voltage, V0 is given by V0 =
EgZin/ [Zg + Zin].

(iv) Recognizing that V0 = V i
0 [1 + Γ0] where V i

0 = EgZ∞/ [Zg + Z∞]
is the forward propagating (incident) voltage in the background
network yields

Γ0 =
Zin

Z∞
Z∞ + Zg

Zin + Zg
− 1. (14)

This reflection coefficient is the input for the inversion algorithm of
Equation (13) with G(ω) given in Equation (12a) and φ′ as given in
Sec. 2.2.

4.1. Inversion in an LC Network

In this section we consider an LC type of network assembled by
sections, each comprising a series inductor followed by a parallel
capacitor. For these types of elements, ζ(ω) = η(ω) = jω giving
ξ = −ω2L̄C̄. Following Equation (7), the frequency range Ω =
(ωmax, ωmax) with ωmin = 0 and ωmax = 2/

√
L̄C̄ = 3.6515 rad/sec,

which suggests that this is a low-pass type of network.
For the first example, consider the following weak perturbation se-

quences in the elements {Ln} = L̄+0.001L̄×[0 0 0 2 2 (−2) (−2) 0 0 0 0 0]
and {Cn} = C̄ + 0.001C̄ × [0 1 1 1 1 0 0 0 0 0 1 (−1)] that are embedded
within the background network. In view of Equation (3b) and re-
calling that zn = ζ(ω)Ln and yn = η(ω)Cn, these perturbations give
δ̄zn = 1−L̄/Ln and δ̄yn = 1−Cn/C̄ and the corresponding profile of the
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Figure 3. The first example of an LC network. The actual and
reconstructed perturbation profiles {δ̄n} are represented by the © and
♦ symbols, respectively, at the tips of the dashed-dotted lines.

interlaced sequence {δ̄n} [see Equation (3)], which is marked in Fig. 3
by the ‘©’ symbols at the tips of the dashed-dotted lines. These pertur-
bation parameters were used in conjunction with the above background
parameters to generate the reflection data Γ0 as in items i–iv in the
procedure above. The reflection coefficient Γ0, was then, used as the
input to the inversion algorithm of Sec. 3 to yield the “reconstructed
perturbation” {δ̄n} of Equation (13) with G(ω) of Equation (12a) and
φ′ of Sec. 2.2. The integration in Equation (13) was calculated by
numerical quadrature employing the entire available frequency span
Ω. The reconstructed perturbation sequence {δ̄n} is depicted in Fig. 3
by the ♦ shaped symbols. It can be noted by comparing the recon-
structed perturbations to the actual perturbations (♦ and © symbols,
respectively) that the imaging algorithm indeed recovered the relative
location of the perturbations, and a near exact recovery of the magni-
tude of the perturbation was also achieved. The small error emerges in
the reconstruction comes since the sum of the perturbation sequence
deviates from zero, therefore introducing an error, see the discussion
in Appendix B.

It should be noted that the number of sections of the network N
has no role in the reconstruction algorithm. This is because attempting
to reconstruct perturbations with indexes greater than approximately
2N (two elements per section), which here is about 43 yields δ̄m ≈ 0,
for m > 43. This is as expected since the network is loaded with
ZN = Z∞ that effectively models background network with identically
zero perturbation.
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Figure 4. Same as in Fig. 3 but for the second example.

For the second example, the following perturbation parameters
were set: {Ln} = L̄ + 0.01L̄× [1 2 3 4 4 3 2 1 0 0 0 0 1 2 3 (−3) (−2) (−1)]
and {Cn} = C̄ + 0.01C̄ × [(−2.5) (−2.5) (−2.5) (−2.5) (−2.5)
(−2.5)(−2.5) (−2.5) 0 0 0 0 (−1) (−1) (−1) 1 1 1], see the ‘©’ symbols
at the tips of the dashed-dotted lines in Fig. 4 that correspond to {δ̄n}.
As in the first example, the simulated Γ0 of Items i–iv above is used
as the input for the inversion of Equation (13). The reconstructed
perturbation sequence {δ̄n} is depicted in Fig. 4 by the ♦ shaped
symbols. It can be readily noted that the reconstructed profile is in
excellent agreement with the actual perturbation sequence in both its
relative location along the network and amplitude (compare the ♦ and
© symbols, respectively).

The results of the second example in Fig. 4 seem somewhat better
than those of the first example in Fig. 3, even though the perturbation
magnitudes here are approximately 10 times those used in the first
example in Fig. 3. In fact, it can be shown that in both examples
the sum |∑m δ̄zm − ∑

m δ̄ym | is of the same order of magnitude.
However, relative to the average perturbation magnitude in the second
example, this sum is lower, therefore denoting the improvement in the
reconstruction. It should be noted that for LC type networks with the
definition of δ̄zn in Equation (3b), though the sum of the perturbation
sequence {L̄− Ln} → 0, the corresponding sum of δ̄zn 9 0.

The last example in this section comprises 30 perturbed sections
that are constructed from 1) series inductors with a normal distribution
with mean L̄ and standard deviation 0.005L̄, i.e., Ln ∼ N (L̄, 0.005L̄);
and 2) parallel capacitors that also have a mean C̄ and standard
deviation 0.005Cn, i.e., Cn ∼ N (C̄, 0.005C̄). As in the previous two
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Figure 5. Same as in Fig. 3 but for the third example.

examples, Fig. 5 depicts the actual and reconstructed perturbations,
which are represented by © and ♦ symbols, respectively. A very
good agreement is obtained between the actual and the reconstructed
profiles. The negligible discrepancy between the two profiles stems
mainly from the fact that although the perturbations are normally
distributed with zero mean, the actual perturbation sequences are finite
in length, and therefore, their actual sum (or mean) deviates from zero
(see the discussion in Appendix B).

4.2. Inversion in a CL Network

In this section we consider a CL type of network assembled by sections,
each of which comprises a series capacitor followed by a parallel
inductor. This type of network facilitates a “lefthand” type of discrete
transmission line [3]. For this type of section ζ(ω) = η(ω) = (jω)−1,
giving ξ = −(ω2L̄C̄)−1. Using Equation (7), it follows that this is
a high-pass type of network with a lower cut-off frequency ωmin =
1/
√

4L̄C̄ = 0.9129 rad/sec and ωmax → ∞. The actual network
consists of 20 sections that were randomly perturbed as in the third
example in Sec. 4.1 with parallel inductors Ln ∼ N (L̄, 0.005L̄) and
series capacitors Cn ∼ N (C̄, 0.005C̄). The reconstructed profile,
following Equation (13) (with G(ω) of Equation (12a) and φ′ of
Sec. 2.2), and the actual profile, are depicted in Fig. 6 with the ♦
and © symbols, respectively. As in the previous examples, here too, a
good agreement is obtained between the actual and the reconstructed
profiles.
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Figure 6. An example of a CL network. The actual and reconstructed
perturbation profiles {δ̄n} are represented by the © and ♦ symbols,
respectively, at the tips of the dashed-dotted lines.

5. SUMMARY AND CONCLUSIONS

A linearized wave-based inversion algorithm for the recovery of
lossless inductance and/or capacitance type scattering elements
(scatterers) embedded within a lossless ladder network was presented.
The algorithm assumes that the scatterers are modeled by a
weak perturbation sequence over the known background medium
(network). Assuming also that the network actually models a discrete
guided wave structure (a transmission line), the nodal voltage and
branch currents are decomposed by voltage/current waves traveling
along the network. Formulating Kirchhoff’s equations and the
associated discrete Helmholtz equation followed by the weak scatterer
assumptions renders the nonlinear equation for the perturbed elements
linear, though frequency dispersive, see in Sec. 2.3. The range of
validity of the weak scatterer assumption giving the linear inversion
was discussed Appendix B. Within the weak scattering assumption, it
was shown that the backscattered wave voltage (reflection coefficient)
is linearly proportional to the Z transform (or a discrete Fourier
transform) of the perturbation sequence evaluated at the complex
frequency-dependent discrete “propagation constant”, Equation (11b).
Using scattered data, of back-reflection type, recorded over a broad
sweep of frequencies where wave propagation takes place allows for
the inversion of the transformed perturbation sequence by a Fourier
type integration giving the actual profile of the transmission line in
Equation (13). The algorithm was demonstrated in Sec. 4 through
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several examples of righthanded LC and lefthanded CL discrete
transmission lines. The examples demonstrates the efficacy of the
algorithm in recovering random distribution of weak perturbation in
the network L and C elements over nominal background elements.

To conclude the discussion, the newly introduced algorithm pre-
sented here is of a one-dimensional discrete filtered backpropagation
type [recall that a continuos version of a filtered backpropagation algo-
rithm is used for diffraction tomography in spatially continuous struc-
tures within the Born and Rytov approximations (see, e.g., [21, 27]].
It should also be pointed that the benefits in using this algorithm for
recovering weak perturbations are: (i) the formulation makes use of
the fact that the network is, by its definition, spatially discrete and
not discretized and assembled of lumped elements (unlike [7, 8]) and
consequently there is an associate inherent frequency dispersion that
is accommodated in the inversion; (ii) it renders the inversion, simply,
of a direct inverse Fourier transform type without any iterative proce-
dure as in other techniques (see e.g., [7, 8, 10, 14, 16]), and without any
need for an a-priori knowledge of the size of the network (number of
ZY sections); (iii) it recovers the perturbations in both the parallel
and series elements (inductance and capacitance and vice versa) over
a known background (unlike [15, 16]) and for all sections of the net-
work; and (iv) the proposed algorithm can be used for both LC and
CL networks without any differences. Recalling that CL networks as
propagation environments are interesting in connection with metama-
terials where the presented algorithms is among the first to suggests
imaging in such structures/networks.

Finally, and on a broader perspective, the study of wave
propagation and its application in physically pre-defined, inherently
discrete structures (and not discretized continuous structure) is gaining
importance since these types of structures/networks offer a wide range
of — e.g., synthesizing new materials — within the metamaterial
framework. To that end, here we discuss one such wave-based
application in the field of non-destructive testing of discrete structures.

APPENDIX A. DISCRETE PROPAGATION CONSTANT
AND ENERGY FLOW

This appendix provides further details on the characteristic properties
of the “discrete propagation” constant α that are used to set (6). To
that end, assume, first, that a wave-mode solution of the second order
homogeneous difference Helmholtz equation Vn+1−(2+ξ)Vn+Vn−1 = 0
is given by Vn = 1/αn, see in [12]. It follows that α is a root of the
characteristic polynomial (dispersion relation) [20] α2−(2+ξ)α+1 = 0
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giving the two possible solutions for α in (6c). Noting in Equation (6c)
that since ξ = ξ(ω) = z̄ȳζ(ω)η(ω), it renders α1,2 = α1,2(ω);
furthermore α1 · α2 = 1

Upon defining the discrete propagation constant in (6) and the
frequency pass-band, Ω = (ωmin, ωmax), in Equation (7) it follows that:
(i) ω ∈ Ω implies by Equation (6c) that |α1,2| = 1, and α1 = α∗2 = 1/α2

(∗ denotes complex conjugation). Denoting α1,2 = ejφ1,2 , where
tanφ1,2 = ±

√
4− (2 + ξ)2/(2 + ξ) gives φ ∈ (0, π) for ω ∈ Ω with

φ → 0, π as ξ → 0,−4, respectively. (ii) for ω /∈ Ω, i.e., stop-band,
α1,2 = 1

2 [(2 + ξ) ±
√

(2 + ξ)2 − 4] ≶ 1 is a real number, resulting in
pure decay or growth in the waves amplitude along the network. Note
that in a lossy network, there could be decaying wave propagation
conditions since α is a complex number.

As was discussed in Equation (6), in the propagation scenario
(ω ∈ Ω) the aim is the delivery of energy from the source (at terminal
“0”) by forward propagating waves and the reception of scattered
energy (at terminal “0”) by backward propagating waves. To each of
these wave modes, α1,2 is assigned in light of the sign (direction) of the
group velocity (delay) vg, which corresponds to the energy wave speed
and the ejωt time dependence. It can be shown that vg1,2 ∼ (φ′1,2)−1,
where φ′1,2 = ∂φ1,2/∂ω = ∓ξ′[4 − (2 + ξ)2]−1/2 with ξ′ = ∂ξ/∂ω.
It follows that for an LC type network, where ξ = −ω2LC (see the
discussion in Sec. 4.1), α1 denotes vg1 > 0 and α2 denotes vg2 < 0. On
the other hand, for a CL type network, where ξ = −(ω2LC)−1 (see
the discussion in Sec. 4.2), α1 denotes vg1 < 0 and α2 denotes vg2 > 0.
These guidelines lead to the choice of α in Equation (6).

APPENDIX B. RANGE OF VALIDITY OF THE
LINEARIZATION

The weak scattering approximation made in Sec. 2.3 leading to the
linearized solution in Equation (10) or Equation (11) is valid for a
certain range of values of the perturbations {δ̄zn , δ̄yn |2 ≤ n ≤ N − 1}.
In that context, two constraints need to be met to validate the
approximation:
(i) Reflection type constraint: The scattered wave field at

node n can be decomposed into two scattered components: (i)
backscattered voltage wave contribution due to scattering from
sections {ZYm} with n < m ≤ N − 1; and (ii) forward scattered
voltage wave due to scattering from sections {ZYm} with 2 <
m < n. In either case the combined contribution of the scattered
components giving V s

n should be weak in comparison to the
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excitation wave, i.e., |V s
n | ¿ |V i

n|. A simple and general expression
for V s

n is difficult to obtain for any n [see in Equation (10)];
however, at the terminal (n = 0) it is given in (11b) leading to the
requirement that |Γ0| ¿ 1. To this end, using Equation (11b) and
noting that |(α− 1)/(α + 1)| = tan(φ/2), this constraint suggests
that

|δ̃(α)| ¿
∣∣∣∣cot

(
φ

2

)∣∣∣∣ (B1)

for all ω ∈ Ω. For ξ → 0, i.e, φ → 0 (α → 1), it follows
that |δ̃(α)| ¿ ∞ which is redundant for any practical network.
On the other hand, for ξ → (−4), i.e., φ → π (α → −1), it
follows that δ̃(α)| → 0. Decomposing δ̃ of Equation (11c) as
δ̃(α)|α→−1 =

∑
me

(−1)−me δ̄me +
∑

mo
(−1)−mo δ̄mo , where me,o

are even and odd m = 0, 1, . . . indexes, respectively, and recalling
Equation (3c) that δ̄mo and δ̄me are associated with δ̄zm and δ̄ym ,
respectively, it follows that the perturbations should satisfy∣∣∣∣∣

∑
m

δ̄zm −
∑
m

δ̄ym

∣∣∣∣∣ → 0. (B2)

Note that: (i) in the case where the actual span of the
excitation frequencies is only a partition of Ω, the requirement
in Equation (B2) should be lifted to a higher value, since
minω | cot(φ/2)| > 0; and (ii) recalling the discussion preceding
Equation (B1), if the backscattered voltage wave component of
V s

n is dominant over the forward scattered wave component, then
Γn = V s

n /V i
n can be approximated only by a backward component

which upon requiring that |Γn| ¿ 1, can yield an expression
similar to Equation (B2), where the summation takes over forward
indexes n ≤ m ≤ N − 1.
The condition stated in Equation (B2) can be satisfied in the
following scenarios:
• Each of the the two summations tends, separately, to zero

or if the combined sum of the two perturbation sequences
tends to zero. This seems to suggest that the perturbations
{δ̄z,ym

} can grow indefinitely as long as Equation (B2) is
satisfied. However, one should recall that in obtaining
Equation (11b) we have neglected second order perturbed
terms in Equation (10). Therefore, {δ̄z,ym

} may grow as
long as contributions due to second order or higher terms
are negligible in comparison to first order contributions (this
condition will be pursued elsewhere).
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• Alternatively, since |δ̃(α)| ≤ 2N maxm{|δ̄m|}, it follows that
maxm{δ̄z,ym

} ¿ | cot(φ/2)|/2N , which pose much more
restricted bounds on the weak scattering approximation than
that taken in the previous item.

(ii) Propagation type constraint: The scattered voltage wave in
Equations (9) and(11) was obtained by assuming that the actual
network {“ZYn”} is “weakly” perturbed from the background
network Z̄Ȳ . Hence, assuming that wave propagation is dictated
by the propagation constant of the background medium, α =
ejφ. However, the actual propagation is dictated by a different
propagation constant, say, β, with β = ejφβ . Noting that
β = αej(φβ−φ), it follows that some propagation phase error is
accumulated along the propagation path. Therefore in order for
the weak scattering approximation to hold, the phase error should
be negligible (¿ π). To quantify this constraint, let us assume,
for simplicity, that there are M < N equally perturbed sections
“Z̄pȲp” with perturbations δ̄z and δ̄y and propagation constant
satisfying β2− (2+ ξp)β−1 = 0, ξp = Z̄pȲp (compare to Sec. 2.2).
The propagation error along M sections is M |φβ − φ| ¿ π.
Assuming weak scattering, expanding β = α + ∆α to first order
in perturbation terms gives ∆α ≈ 2jα∆ξ/ sin(φ), and therefore,
β ≈ α(1+2j∆ξ/ sin(φ)) giving φβ = φ+arctan(2∆ξ/ sin(φ)) with
∆ξ = ξp−ξ ≈ ξ(δ̄z+δ̄y) = −4(δ̄z−δ̄y)/ sin2(φ/2). Thus, the phase
error along one section is |φβ −φ| ≈ | arctan(4(δ̄z − δ̄y) tan(φ/2))|.
Consequently, along M sections the phase error is

∣∣arctan(4(δ̄z − δ̄y) tan(φ/2))
∣∣ ¿ π

M
. (B3)

The condition in Equation (B3) becomes most severe for φ → π
(α → −1). This condition is met whenever the two perturbation
terms δ̄z, δ̄y → 0 separately or δ̄z − δ̄y → 0. Interestingly, if
the perturbed part of the network is composed of many different
perturbed subparts, each assembled from a number of uniform
perturbed sections, the condition in Equation (B3) coincides with
Equation (B2). It should be kept in mind that these conditions
hold whenever higher order terms in Equation (10) are neglected.
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