Vol. 30
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-02-15
Simple Skewon Medium Realization of dB Boundary Conditions
By
Progress In Electromagnetics Research Letters, Vol. 30, 29-39, 2012
Abstract
Considering the class of bi-isotropic media, a special case called the class of simple skewon (SS) media is defined. The SS medium depends on a single parameter. A plane wave incident on a planar interface of an SS medium is shown to reflect as from a DB boundary with vanishing normal components of D and B field vectors. This offers another possibility to realize the DB boundary conditions in terms of a medium interface. The same property is shown to apply for curved boundaries as well.
Citation
Ismo Veikko Lindell, and Ari Sihvola, "Simple Skewon Medium Realization of dB Boundary Conditions," Progress In Electromagnetics Research Letters, Vol. 30, 29-39, 2012.
doi:10.2528/PIERL11121802
References

1. Kong, J. A., Theory of Electromagnetic Waves, Wiley, 1975.

2. Lindell, I. V., Methods for Electromagnetic Field Analysis, Oxford University Press, 1992.

3. Deschamps, G. A., "Electromagnetics and differential forms," Proc. IEEE, Vol. 69, No. 6, 676-696, 1981.
doi:10.1109/PROC.1981.12048

4. Lindell, I. V., Differential Forms in Electromagnetics, Wiley, 2004.
doi:10.1002/0471723096

5. Hehl, F. W. and Y. Obukhov, Foundations of Classical Electrodynamics, Birkhäuser, 2004.

6. Lindell, I. V. and A. Sihvola, "Perfect electromagnetic conductor," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 7, 861-869, 2005.
doi:10.1163/156939305775468741

7. Hehl, F. W., Y. N. Obukhov, and G. F. Rubilar, "On a possible new type of a T odd skewon field linked to electromagnetism," General Relativity and Quantum Cosmology, 2002.

8. Obukhov, Y. N. and F. W. Hehl, "On possible skewon effects on light propagation," Phys. Rev. D, Vol. 70, 125015, 2004.
doi:10.1103/PhysRevD.70.125015

9. Hehl, F. W., Y. N. Obukhov, G. F. Rubilar, and M. Blagojevic, "On the theory of the skewon from electrodynamics to gravity," Phys. Lett. A, Vol. 347, 14-24, 2005.
doi:10.1016/j.physleta.2005.06.033

10. Nieves, J. F. and P. B. Pal, "The third electromagnetic constant of an isotropic medium," Am. J. Phys., Vol. 62, 207-216, 1994.
doi:10.1119/1.17598

11. Lindell, I. V., "The class of bi-anisotropic IB media," Progress In Electromagnetics Research, Vol. 57, 1-18, 2006.
doi:10.2528/PIER05061302

12. Lindell, I. V., A. Sihvola, S. A. Tretyakov, and A. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media, Artech House, 1994.

13. Paiva, C. R. and S. A. Matos, "Is the perfect electromagnetic conductor the most general truly isotropic medium?," Proc. Metamaterials Congress, 176-178, Barcelona, 2011.

14. Lindell, I. V. and A. Sihvola, "Transformation method for problems involving perfect electromagnetic (PEMC) structures," IEEE Trans. Antennas Propag., Vol. 53, No. 9, 3005-3011, Sep. 2005.
doi:10.1109/TAP.2005.854519

15. Sihvola, A. and I.V. Lindell, "Perfect electromagnetic conductor medium," Ann. Phys. (Berlin), Vol. 17, No. 9--10, 787-802, 2008.
doi:10.1002/andp.200710297

16. Rumsey, V. R., "Some new forms of Huygens' principle," IRE Trans. Antennas Propagat., Vol. 7, S103-S116, Special Supplement, 1959.

17. Yee, K. S., "Uniqueness theorems for an exterior electromagnetic field," SIAM J. Appl. Math., Vol. 18, No. 1, 77-83, 1970.
doi:10.1137/0118010

18. Kress, R., "On an exterior boundary-value problem for the time-harmonic Maxwell equations with boundary conditions for the normal components of the electric and magnetic field," Math. Meth. in the Appl. Sci., Vol. 8, 77-92, 1986.
doi:10.1002/mma.1670080106

19. Lindell, I. V. and A. Sihvola, "Electromagnetic boundary condition and its realization with anisotropic metamaterial," Phys. Rev. E, Vol. 79, No. 2, 026604-7, 2009.
doi:10.1103/PhysRevE.79.026604

20. Zhang, B., H. Chen, B.-I. Wu, and J. A. Kong, "Extraordinary surface voltage effect in the invisibility cloak with an active device inside," Phys. Rev. Lett., Vol. 100, 063904-4, Feb. 15, 2008.

21. Yaghjian, A. D. and S. Maci, "Alternative derivation of electromagnetic cloaks and concentrators," New J. Phys., Vol. 10, 115022-29, 2008. Corrigendum, ibid, Vol. 11, 039802, 2009.
doi:10.1088/1367-2630/10/11/115022

22. Weder, R., "The boundary conditions for point transformed electromagnetic invisible cloaks," J. Phys. A, Vol. 41, 415401-17, 2008.
doi:10.1088/1751-8113/41/41/415401

23. Lindell, I. V., A. Sihvola, P. Ylä-Oijala, and H. Wallén, "Zero backscattering from self-dual objects of finite size," IEEE Trans. Antennas Propag., Vol. 57, No. 9, 2725-2731, Sep. 2009.
doi:10.1109/TAP.2009.2027180

24. Lindell, I. V. and A. H. Sihvola, "Uniaxial IB-medium interface and novel boundary conditions," IEEE Trans. Antennas Propagat., Vol. 57, No. 3, 694-700, Mar. 2009.
doi:10.1109/TAP.2009.2013431

25. Van Bladel, J., Electromagnetic Fields, 2nd Ed., 1025-1030, IEEE Press, 2007.
doi:10.1002/9780470124581.app3

26. Lindell, I. V. and A. Sihvola, "Electromagnetic boundary conditions defined in terms of normal field components," Trans. IEEE Antennas Propag., Vol. 58, No. 4, 1128-1135, Apr. 2010.
doi:10.1109/TAP.2010.2041149

27. Tretyakov, S., I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, "Waves and energy in chiral nihility," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 5, 695-706, 2003.
doi:10.1163/156939303322226356