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Abstract—Considering the class of bi-isotropic media, a special case
called the class of simple skewon (SS) media is defined. The SS medium
depends on a single parameter. A plane wave incident on a planar
interface of an SS medium is shown to reflect as from a DB boundary
with vanishing normal components of D and B field vectors. This offers
another possibility to realize the DB boundary conditions in terms of
a medium interface. The same property is shown to apply for curved
boundaries as well.

1. INTRODUCTION

The most general linear electromagnetic medium can be defined in
terms of 36 parameters, either in terms of four medium dyadics as [1, 2]

(B)-()()

in the three-dimensional representation for Gibbsian vector fields, or
in terms of a single medium dyadic as

v = M@, (2)
in four-dimensional differential-form representation [3,4]. In the latter
case the field two-forms W and ® can be expressed as

¥Y=D-HAdr, @®=B+EAdr, (3)
in terms of three-dimensional (spatial) two-forms D, B and one-forms
H, E. 7 = ct is the normalized time. The medium dyadic M

aINel
=
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corresponds to a 6 X 6 matrix in any basis expansion of field two-
forms. According to Hehl and Obukhov [5], the medium dyadic M can
be naturally (independently of any basis system) decomposed in three
parts as B B B B

|\7|:|\7|1+|\7|2+|\7|3, (4)
where the dyadics are respectively called principal, skewon and axion
components of M. The axion part is a multiple of the unit dyadic which
in the notation of [4] has the form

Mg = M3l (5)

while both I\:/|1 and |\:/|2 are trace-free dyadics. The components l\:/ll and
My can be defined so that the dyadics contracted by a quadrivector ey

as ey |M; and ey |My are respectively symmetric and antisymmetric.
Properties of these components are discussed in [5].
The total number of 36 parameters is distributed by the three

components so that the principal part My, corresponding to a trace-

free symmetric 6 x 6 matrix has 20 parameters, the skewon part Mo,
corresponding to an antisymmetric 6 x 6 matrix, has 15 parameters,
and the axion part Mg, has 1 parameter. - -

A medium consisting only of its axion parameter, M = M3 in (5),
has been called PEMC, perfect electromagnetic conductor, because it
is a generalization of both PMC (M3 = 0) and PEC (1/M3 = 0), [6].
A material consisting only of its skewon parameter, M = My was
introduced in [7] and its properties were considered in [8,9].

2. SIMPLE SKEWON (SS) MEDIUM

Let us consider the medium known as bi-isotropic medium and defined
by four scalar parameters in the Gibbsian vector form (1) as

(B)-(ci)(%) @

Another presentation for this medium is

(1) (5 5 ) (%) @

The parameters of (6) and (7) have the relations

a=&ut (8)
€ =e— f:u_1<7 (9)
pt = (10)
)

B =-n'C (11
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One should notice that while g is the same quantity in both
representations, € is not, whence it is denoted by €’ in (7).

Working through the four-dimensional analysis, omitted here, the
parameters €, p~! can be shown to form the principal part of the
medium while o and [ together form the axion and skewon parts.
Expressing

a=N+M, p=N-M, (12)

one can actually show that M corresponds to the axion part, and N
to the skewon part, of the bi-isotropic medium.

A bi-isotropic medium consisting of its principal part, « = 3 =0,
is just the ordinary isotropic medium defined by the parameters
i, € = €. Similarly, a bi-isotropic medium consisting of its axion
part only, satisfying p=' = 0, ¢ = 0 and @ = —3 = M, equals the
PEMC medium. It can be defined by the medium conditions

D=MB, H=-ME. (13)

It is noteworthy that (13) cannot be directly expressed in the form (6)
because p has no finite value.

The last simple special case, a bi-isotropic medium consisting of
its skewon part only, u=! = ¢ =0, a = 8 = N, has not been widely
studied. The conditions

D=NB, H=NE (14)

are quite similar to those of the PEMC, (13). Since, instead
of 15 parameters, there is only a single scalar parameter in the
definition (14), let us call it by the name simple skewon medium or
SS medium for short. Conditions of the type (14) were previously
formulated in [10], [5] Equation (D.1.117) and, together with the axion
term, in [11] Equation (75).

Since it is difficult to express the SS medium conditions in the
form (6), let us consider obtaining (14) as a limit of (8)—(11) as

a = f,u_l =N, (15)
€ =e—&n N =e/q, (16)
pt = =1/(p0q), (17)
§=—p =N, (18)

which obviously yields (14) for ¢ — oo. From these we can solve the
bi-isotropic parameters (6) as

e &\ _ ( —Nuo+e/i* Ny,
<C >_q< —Npto Ho > (19)

which can be recognized as an isotropic chiral medium [12], with N
representing the chiral parameter of the medium. One may notice
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that for ¢ — oo all four parameters become infinite in (19). The term
€,/q* is necessary for the matrix to have an inverse for finite g, as was
recognized for the similar representation of the PEMC in [13].

3. INTERFACE OF SS MEDIUM

It is known from previous analyses that the PEMC has strange
properties as a medium, but its interface serves as a boundary with
certain interesting properties [14,15]. Since the SS medium appears
equally strange, let us study its properties at the interface. Let us
assume an isotropic half space z < 0 with parameters p,, €, bounded
by a planar interface z = 0 of an SS medium half space z > 0 and a
plane wave incident to the interface

(i )= ()

The reflected wave has the form
Er(r) _ E" jkzz —jkex
( H'(r) ) = ( H" )e € ’ (21)

E2 4 k2 = k2 = wlpoc,. (22)

Because the tangential components of E and H vectors are
continuous over the boundary, at z = 0 they satisfy

with

u, x (H +H") = Nu, x (E'+E"). (23)

Similarly, from the continuity of the the normal components of the D
and B vectors we obtain

u, - (D'+D") = Nu, - (B"+B"). (24)

Now we can write from the Maxwell equations
u, - (uxkx X El) = wu, - Bi, 25
26
27

28

u, - (ugk, x E") = wu, - B,

u, - (uxkgg X HZ) = —wu, - Di,
u, - (ugk, x H)

Combining (25) and (26) we have

k:xux Uy X (:EZ + Er) = —wuy - (BZ + BT) ) (29)

(25)
(26)
(27)
(28)

= —wu, -D".



Progress In Electromagnetics Research Letters, Vol. 30, 2012 33

while combining (27), (28) and taking (23) and (24) into account yields
kot u, x (E'+E") =wu, - (B'+B"). (30)

From (29), (30), (23) and (24) we conclude that the following
conditions must be satisfied by the fields of any plane wave at the
interface of the SS half space:

u, - (E'+E") =0, u, - (H+H)=0, (31)
u.-(B'"+B") =0, u, (D'+D")=0. (32)

To summarize, the total fields E and H have no component
orthogonal to the k vector plane while the D and B vectors have
no components orthogonal to the planar interface of the SS medium.
Since the latter property is independent of the k vector of the plane
wave and linear in the D and B fields, it is valid for any combination
of plane waves, in short, for any fields in the form

n-D=0, n-B=0, (33)

where the unit normal vector n equals u, in the present case. It should
be noted that this property is also independent of the parameter N of
the SS medium. Finally, one should also note that, since the axion
part of the medium dyadic is known to be inactive for the plane wave,
the same DB conditions are also obtained for the simple skewon-axion
medium defined by (12).

Boundary conditions of the form (33) were probably first
introduced in [16] and proved to yield unique solutions to boundary-
value problems in [17, 18]. The conditions (33) have more recently been
called DB conditions [19]. They have proved important in constructing
electromagnetic cloaking structures [20-22]. It has also been shown
that objects with certain symmetry properties and defined by DB
boundary conditions have zero backscattering, i.e., they cannot be seen
by the monostatic radar [23].

In [16] it was shown that DB conditions can be realized by
an anisotropic medium with zero components €., and p,, in the
permittivity and permeability dyadics. Also, it was shown in [24] that
six-parameter uniaxial skewon-axion media have the same property,
making DB boundary conditions at the planar interface. Thus, the
present analysis has added the possible realizations with yet another
medium. Although the SS medium is a special case of the six-
parameter medium of [24] the analysis was actually not valid for certain
special cases including the present SS medium. Also, it was limited to
planar boundaries. In Appendix A it is shown that the conditions (33)
are valid for more general curved interfaces of SS media.



34 Lindell and Sihvola

4. FIELDS IN THE SS MEDIUM

Let us assume that a plane wave reflected from the interface z = 0
creates a transmitted plane wave in the SS medium half space z > 0,

(8- (F)owone

From continuity, k, equals that of the incident wave. The Maxwell
equations for the plane wave fields, with the conditions (14) inserted,
are

(w.k +uzk,) x B —wB! = 0 (35)
(u,k! + uzk,) x NE' + WNB' = 0. (36)
Multiplying the first equation by N and subtracting we obtain
B'=0, D'=0 (37)
in the SS medium. Also, we have
u,-E'=0, u, H =0 (38)
and
klu, - E' — kyu, - E! = 0, (39)
klu, - H' — kyu, - HY = 0. (40)

Although u, - E! and u, - H' as well as k, are determined by the
incident field, k. and u, - E* cannot be determined because there is no
dispersion equation from which k! could be solved. This is similar to
the PEMC medium in which the fields are not unique. However, the
fields outside the SS medium are unique.

Unique fields can be obtained by considering The SS medium as
a limiting case of the bi-isotropic medium (19) with ¢ — oo. The
plane-wave equation for the transmitted field E! can be easily derived
as

k' x (k' x E*) + 2wu,Ngk' x E' + k2E" = 0. (41)
For finite ¢ this implies
k' -E'=klu, -E' + kyu, - E' = 0. (42)
Inserting this in (41) we obtain the dispersion equation
(k' k' — k2)? + k2¢%(2Nn,) Kkt - K = 0. (43)

This has two solutions kY - k. which, after some algebra, for ¢ — oo
can be written as

K\ K\ — —k2q°(2N7,)%, K. -KL — —k}/q°(2N7,)%. (44)
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Because ki, = k, is finite, we have

kir — j2qkoNno,  k—p — —jkz, (45)
In both cases (41) yields
E, -E} = (u,- Eti)2 + (u; - EZ_L)Q =0, (46)

whence the eigenfields are circularly polarized. From (42) and (45) we
have
u.-E -0, = E, -0 H,—0. (47)

Since also ky - D, = 0, ky - BL = 0, there is no coupling to this
eigenfield through the interface.
Because of (45) the eigenfield E decays exponentially for z — oo
and
wBf =k! xE! -0, wD_ —0, (48)

whence DB conditions are valid at the interface.

5. CONCLUSION

A class of media has been defined under the name simple skewon (SS)
media. Any SS medium is a special case of bi-isotropic media and
depends on a single parameter N. It was shown that a plane wave
incident at a planar interface of an SS medium is reflected as from
a DB boundary for any parameter N value. Thus, the planar DB-
boundary conditions can be realized by an interface of an SS medium.
Fields inside the SS medium are unique if the medium is defined as
a limiting case of a bi-isotropic medium. The same property was also
shown to be valid for curved boundaries. The material realization of
an SS medium is a topic for future study. A promising direction to look
for such a realization would be the use of strongly resonating helices
embedded into a dielectric matrix making an isotropic chiral medium
with large parameters €, u, &, . The materialization scheme of chiral
nihility through an ensemble of interacting helical scatterers described
in [27] could be used as a starting point.
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APPENDIX A. CURVED INTERFACE OF SS MEDIUM

Let us consider the interface z3 = 0 of an isotropic medium (u,€) in
x3 > 0 and SS medium z3 < 0, where z3(r) is a coordinate function in
a curvilinear coordinate system x1, xo2, x3. Maxwell equations in the
isotropic medium side of the interface can be written as

VxE = —jwB, (A1)
V xH = jwD. (A2)

The components of the Maxwell equations parallel to ug can be
expressed in coordinate expansions as [25, 26]

1
——— (02, (h2E2) — Oy, (M1 E1)) = —jwBs, (A3)
hiho
1
7o (O (h2H2) = Oy (1 H1)) = jwDs. (Ad)
1702

Because of continuity of the tangential components Ei, Fo, Hi, Ho
and the normal components Bg, D3 across the interface, the fields
satisfy the conditions of the SS medium as

nng = NBg, 770H1 = NEl, T]OH2 = NE2 (A5)
Thus, we can rewrite the Equation (A4) at the interface as
N .
m(@xl (hQEQ) - ({“):52 (hlEl)) = j(.UNBg (A6)

Multiplying (A3) by B and subtracting (A6) and (A3) we obtain
2N B3 = 0, whence we arrive at the conditions

BSZH-B:O7 D3:D-D:0, (A?)

which coincide with (33). Thus, also the curved interface of an SS
medium acts as a DB boundary.

APPENDIX B. WAVES IN THE BI-ISOTROPIC
MEDIUM

Let us briefly consider plane waves in the special bi-isotropic medium
defined by the medium parameter matrix (19) following the notation
of [12]. The chirality parameter denoted by x can be identified as

k= jqN1,, (B1)

whence for ¢ — oo we have |k| — oo. Substituting from (19) we obtain

1
n =/ pe/ o€ = 1—|—/<a2—>/1+2—. (B2)
K
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Thus, the two circularly polarized eigenwaves E4 propagate as in two
isotropic media with respective effective refraction factors defined by

ney=ntr, ny—2k n_—1/2k. (B3)

Because of [n4| — oo and |n_| — 0 for ¢ — oo, the two eigenwaves see
two very different media.

The medium appears lossless when ny and n_ have real values,
which requires that N must be imaginary. For real N, the n; and
n_ are imaginary with opposite signs which means that the medium
is passive for one of the waves and active for the other one. It may
be difficult to realize such a medium. On the other hand, imaginary
N in Gibbsian representation corresponds to an operator in the four-
dimensional definition of the SS medium in which case /N is a multiple
of differentiation in time.
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