Vol. 38
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-02-09
Towards the Detection of Multiple Reflections in Time-Domain EM Inverse Scattering of Multi-Layered Media
By
Progress In Electromagnetics Research B, Vol. 38, 351-365, 2012
Abstract
In this paper, a new theoretical approach for the classification of multiple reflections in time-domain e.m.~inverse scattering of multi-layered media is presented. The existence of multiples limits the capabilities of inversion algorithms, thus suitable identification and suppression techniques should be applied to reduce this undesired effect. Assuming a scenario composed of loss-less and non-dispersive media, and providing an accurate time delay estimation (TDE) of backscattered signals, the proposed method allows not only to evaluate the presence of multiples and discriminate them from primary reflections, but also to determine their propagation paths. Preliminary tests performed on FDTD simulated data have shown its potentialities to effectively handle multiple reflections and therefore to enhance the e.m. signals backscattered by primary reflectors.
Citation
Salvatore Caorsi, and Mattia Stasolla, "Towards the Detection of Multiple Reflections in Time-Domain EM Inverse Scattering of Multi-Layered Media," Progress In Electromagnetics Research B, Vol. 38, 351-365, 2012.
doi:10.2528/PIERB11121407
References

1. Essenreiter, R., M. Karrenbach, and S. Treitel, "Multiple reflection attenuation in seismic data using backpropagation," IEEE Transactions on Signal Processing, Vol. 46, No. 7, 2001-Jul. 2011, 1998.
doi:10.1109/78.700971

2. Backus, M. and J. Simmons, "Multiple reflections as an additive noise limitation in seismic reflection work," Proceedings of the IEEE, Vol. 72, No. 10, 1370-1384, Oct. 1984.
doi:10.1109/PROC.1984.13024

3. Zhou, B. and S. Greenhalgh, "Multiple suppression by a waveequation extrapolation method," Explor. Geophys., Vol. 22, No. 2, 481-484, 1991.
doi:10.1071/EG991481

4. Essenreiter, R., M. Karrenbach, and S. Treitel, "Identification and classification of multiple reflections with self-organizing maps," Geophysical Prospecting, Vol. 49, No. 3, 341-352, 2001.
doi:10.1046/j.1365-2478.2001.00261.x

5. Lahouar, S. and I. L. Al-Qadi, "Automatic detection of multiple pavement layers from GPR data," NDT & E International, Vol. 41, No. 2, 69-81, 2008.
doi:10.1016/j.ndteint.2007.09.001

6. Lee, J. S., C. Nguyen, and T. Scullion, "A novel, compact, low-cost, impulse ground-penetrating radar for nondestructive evaluation of pavements," IEEE Transactions on Instrumentation and Measurement, Vol. 53, No. 6, 1502-1509, Dec. 2004.
doi:10.1109/TIM.2004.827308

7. Verma, P. K., A. N. Gaikwad, D. Singh, and M. J. Nigam, "Analysis of clutter reduction techniques for through wall imaging in UWB range," Progress In Electromagnetics Research B, Vol. 17, 29-48, 2009.
doi:10.2528/PIERB09060903

8. Moutinho, L., J. L. Porsani, and M. J. Porsani, "Deconvolução preditiva de dados GPR adquiridos sobre lâmina d'Água: Exemplo do rio taquari, pantanal matogrossense," Revista Brasileira de Geofísica, Vol. 23, 61-74, Mar. 2005.

9. Nakashima, Y., H. Zhou, and M. Sato, "Estimation of groundwater level by GPR in an area with multiple ambiguous reflections," Journal of Applied Geophysics, Vol. 47, No. 3--4, 241-249, 2000.

10. Zhao, Y., J. Wu, X. Xie, J. Chen, and S. Ge, "Multiple suppression in GPR image for testing back-filled grouting within shield tunnel," 2010 13th International Conference on Ground Penetrating Radar (GPR), Jun. 1--6, 2010.

11. Mordell, L., Diophantine Equations, Academic Press, 1969.

12. Rosen, K. H. and J. G. Michaels, Handbook of Discrete and Combinatorial Mathematics, CRC Press, 2000.

13. Wilf, H. S., Generatingfunctionology, A. K. Peters, Ltd., 2006.

14. Sertöz, S., "On the number of solutions of a diophantine equation of frobenius," Discrete Mathematics and Applications, Vol. 8, 153-162, 1998.
doi:10.1515/dma.1998.8.2.153

15. Komatsu, T., "On the number of solutions of the diophantine equation of frobenius --- General case," Mathematical Communications, Vol. 8, 195-206, Dec. 2003.

16. Aardal, K., C. A. J. Hurkens, and A. K. Lenstra, "Solving a system of linear diophantine equations with lower and upper bounds on the variables," Math. Oper. Res., Vol. 25, 427-442, Aug. 2000.
doi:10.1287/moor.25.3.427.12219

17. Lenstra, A., H. Lenstra, and L. Lovász, "Factoring polynomials with rational coefficients," Math. Ann., Vol. 261, 515-534, 1982.
doi:10.1007/BF01457454

18. Bryant, R. E., "Graph-based algorithms for boolean function manipulation," IEEE Transactions on Computers, Vol. 35, 677-691, 1986.
doi:10.1109/TC.1986.1676819

19. Giannopoulos, A., "Modelling ground penetrating radar by GprMax," Construction Building Mater., Vol. 19, No. 10, 755-762, Dec. 2005.
doi:10.1016/j.conbuildmat.2005.06.007

20. Courant, R., K. Friedrichs, and H. Lewy, "On the partial difference equations of mathematical physics," IBM J. Res. Dev., Vol. 11, 215-234, Mar. 1967.
doi:10.1147/rd.112.0215

21. Protiva, P., J. Mrkvica, and J. Macháč, "Time delay estimation of UWB radar signals backscattered from a wall," Microwave and Optical Technology Letters, Vol. 53, No. 6, 1444-1450, 2011.
doi:10.1002/mop.25985

22. Caorsi, S. and M. Stasolla, "Electromagnetic infrastructure monitoring: the exploitation of GPR data and neural networks for multi-layered geometries," Proc. of IGARSS'10, Honolulu, Hawaii, USA, Jul. 25--30, 2010.

23. Saarenketo, T. and T. Scullion, "Road evaluation with ground penetrating radar," Journal of Applied Geophysics, Vol. 43, No. 2--4, 119-138, 2000.
doi:10.1016/S0926-9851(99)00052-X