
Progress In Electromagnetics Research B, Vol. 38, 351–365, 2012

TOWARDS THE DETECTION OF MULTIPLE REFLEC-
TIONS IN TIME-DOMAIN EM INVERSE SCATTERING
OF MULTI-LAYERED MEDIA

S. Caorsi* and M. Stasolla

Department of Electronics, University of Pavia Via Ferrata 1, Pavia
27100, Italy

Abstract—In this paper, a new theoretical approach for the
classification of multiple reflections in time-domain e.m. inverse
scattering of multi-layered media is presented. The existence of
multiples limits the capabilities of inversion algorithms, thus suitable
identification and suppression techniques should be applied to reduce
this undesired effect. Assuming a scenario composed of loss-less and
non-dispersive media, and providing an accurate time delay estimation
(TDE) of backscattered signals, the proposed method allows not only
to evaluate the presence of multiples and discriminate them from
primary reflections, but also to determine their propagation paths.
Preliminary tests performed on FDTD simulated data have shown its
potentialities to effectively handle multiple reflections and therefore to
enhance the e.m. signals backscattered by primary reflectors.

1. INTRODUCTION

The problem of multiple reflections is a well-known issue in time
domain inverse scattering: the probing equipment generates a wave
that propagates until it encounters a discontinuity, being partly
transmitted, partly reflected; each of the two generated waves becomes
a new source that may strike on other interfaces and split as
well, inducing a theoretically infinite train of waves that alters the
informational content of the received signal.

Multiples’ suppression has become an essential operation in
seismic investigations, especially within the marine environment, where

Received 14 December 2011, Accepted 3 February 2012, Scheduled 9 February 2012
* Corresponding author: Salvatore Caorsi (salvatore.caorsi@unipv.it).



352 Caorsi and Stasolla

the water layer often behaves as a wave trap, so that waves are multiply
reflected between the sea surface and the sea bottom, contaminating
the seismograms and thus disguising important information about
subsurface reflectors [1]. Most commonly employed techniques are
based on predictive deconvolution [2], a process that improves the
temporal resolution of seismic data by compressing the basic seismic
wavelet, and that can therefore be used to remove a significant
part of the multiples. More recently, new methodologies have been
devised, that employ wave-equation extrapolation [3] and artificial
neural networks [4], which make no assumptions on periodicity or
moveout patterns of multiples, and can cope with complex unknown
environments.

Despite its close affinity with seismic observations, the problem of
multiple reflections in e.m. inverse scattering has still to be addressed.
In literature, in fact, the prevailing approach is to neglect the presence
of multiples in order to simplify the analysis [5, 6] or apply generic
clutter removal techniques [7], and only a few recent works can be
cited that try to explicitly face the problem. Standard filtering
techniques, such as predictive deconvolution [8] and two-dimensional
f−k filtering [9], are generally employed, but some application-oriented
algorithms can be anyway found, as in [10], where the ‘wave field
prediction and removal method’ have been devised to enhance GPR
images for the quality assessment of back-filled grouting in a shield
tunnel.

In this work, we present a new theoretical approach for multiple
reflections’ identification and classification in time-domain e.m. inverse
scattering of multi-layered scenarios. Under the hypotheses of loss-
less and non-dispersive media, and accurate time delay estimation
(TDE) of backscattered signals, the method allows without any a-
priori knowledge of the scenario not only to evaluate the presence
of multiples and discriminate them from primary reflections, but also
to determine their propagation path, information that, as far as we
know, has never been provided. It is straightforward that under
different operational conditions, the overall performances are expected
to worsen, and therefore further steps should be introduced within the
processing chain.

The paper is organized as follows: in the next section the
algorithm will be theoretically discussed, introducing the notions of
diophantine equations and binary decision trees; Section 3 discusses a
demonstrative example providing some preliminary results; Section 4
concludes the paper with comments and final remarks.
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2. ALGORITHM DESCRIPTION

As hinted in the previous section, if a pulsed e.m. source illuminates a
multi-layered object, an infinite chain of signals would be produced.
In particular, having assumed L loss-less and non-dispersive layers
over an infinite background (see Fig. 1), these signals can (1) remain
trapped within internal strata; (2) propagate indefinitely through the
background; (3) be backscattered.

At the receiver, we would then collect a signal u(t) made of two
separate contributions: the echoes directly reflected by the interfaces
of the medium (DR), and a subset of the multiple reflections (MR)
generated at each discontinuity:

u(t) =
∑

d

Adu(t− td) +
∑
m

Amu(t− tm) (1)

According to the above consideration, the rationale behind this
paper is that a DR has a generic (let us say independent) arrival
time td which is due to the dielectric and geometric characteristics
of the illuminated object, while MRs feature delays tm which can
be deterministically derived as linear combinations of the time shifts
between subsequent DRs.

In case of simple scenarios and/or for the processing of the very
first echoes of the radargram, the relation between a MR and the
DRs might be determined by means of a direct searching. However,
in general, if we assume that at a certain instant t∗ the receiver
has already sensed n different direct reflections (DR1, DR2, . . . , DRn
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Figure 1. Test scenario: a pulsed e.m. source (TX) illuminates a
multi-layered object and a receiver (RX) measures the backscattered
radiation.
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backscattered by interface I1, I2, . . . , In at times t1, t2, . . . , tn), and a
new incoming echo is arriving, we can easily obtain that in case of a
MR this arrival time can be expressed as:

t∗ = t0 + a1(t1 − t0) + a2(t2 − t1) + . . . + an(tn − tn−1)

a1, a2, . . . , an ∈ N
(2)

with t0 the initial acquisition time.
It is worth mentioning that the condition for an independent

arrival time holds true only for a1, a2, . . . , an = 1. In this case, in
fact, Eq. (2) reduces to:

t∗ = t0 + (t1 − t0) + (t2 − t1) + . . . + (tn − tn−1) = tn

More in general, Eq. (2) suggest that it would be possible to
process a generic received signal and establish — only provided that
the delay for each component of the signal can be detected (this is not
the scope of this paper) — (A) whether a received pulse represents a
direct interface reflection or a multiple echo and (B) its propagation
path.

The two phases of the algorithm will be discussed hereafter in
detail, focusing on their processing scheme.

2.1. MR Echo Classification

Due to its form, the relation between the arrival time of a MR and the
time shifts of the already received DR belongs to a particular family
of linear equations called Diophantine equations [11], which have the
form:

aTx = b, a,x ∈ Zn, b ∈ Z (3)

Over the Integers, infinitely many vectors a satisfy Eq. (3), but
when lower and/or upper bounds are imposed, the equation can be
either inconsistent or have a finite number S of solutions [12]. In
particular, when searching for non-negative solutions, we can borrow
from combinatorics some useful results. The main counting theorem,
in fact, states [13] that this number can be interpret as the coefficient
of the term zb of the complex valued function

φ(z) =
n∏

k=1

(1− zak)−1 (4)

with ak each element of vector a. φ is a meromorphic function which
has poles located on the unit circle |z| = 1 and is analytic at the
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origin [14], so it can be expanded to a power series of the form

φ(z) =
∞∑

q=0

fqz
q, for |z| < 1 (5)

Eq. (5) is a Laurent series with centerpoint at the origin and whose
coefficient fq has the form

fq =
1

2πi

∫

γ

φ(ζ)dζ

ζq+1
(6)

with γ any loop that winds once counterclockwise about the
centerpoint.

The number of solutions S can be therefore seen as the residue
of the function φ(z)/zb+1 at the origin, with b the constant term of
Eq. (3):

S = fb = Res
(

φ(z)
zb+1

)
(7)

For a detailed discussion on the computation of Eq. (7), the reader can
refer to [15].

As regards the evaluation of the full set of solutions satisfying
Eq. (2), we here recall a methodology which employs the basis
reduction algorithm and guarantees a polynomial processing time [16].

The keypoint of the method is that solving a system of linear
Diophantine equations,

Ax = b, A ∈ Zm×n, x ∈ Zn, b ∈ Zm (8)

which Eq. (3) is a special case of, is equivalent to study whether or not
the term b belongs to the lattice L of the matrix A, defined as the set
of all integer linear combinations of its columns aj :

L =





n∑

j=1

αjaj : αj ∈ Z, 1 ≤ j ≤ n



 (9)

To solve the problem above, the approach requires first the
construction of the matrix R, whose columns form a basis for lattice
L, formulated as:

R =




In 0n×1

01×n N1

N2 A −N2 b




It can be proven that, if a solution to Eq. (8) exists,
and the numbers N1 and N2 are chosen large enough [16], the
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(n + 1)× (n−m + 1) submatrix R̂ of reduced basis obtained after
applying the basis reduction algorithm in [17] would have the form:

R̂ =
(

Xn×(n−m)
H xNH

01×(n−m) N1

)

where xNH ∈ Zn is an integer vector satisfying AxNH = b and XH is
a n×(n −m) matrix whose linearly independent columns xH,j satisfy
AxH,j = 0.

Observing that A(xNH + xH) = b, we can obtain the complete
solution x of Eq. (8) — or a proof of its infeasibility — by adding
the particular solution xNH to any linear integer combination of the
columns of XH :

x = xNH +
n−m∑

j=1

λjxH,j , λj ∈ Z (10)

Nevertheless, such results cannot directly apply to Eq. (2), since the
lower bound x ≥ 0 must be first enforced.

To this end, the method is finalized with a branching algorithm
that branches on linear combinations of vectors of XH and discards
the negative solutions.

2.2. MR Path Reconstruction

Once the coefficients that satisfy Eq. (2) for a certain t∗ have been
found according to the procedure described in the previous section, it is
possible to reconstruct the propagation path of the multiple reflections
which have featured that specific arrival time.

The particular nature of the problem (at each discontinuity,
the propagating signal is split into two opposite waves), hints that
a suitable approach can be based on the construction of a Binary
Decision Tree (BDT) [18].

Therefore, starting from the root vertex (corresponding to the
transmitting antenna), a BDT is built with 2B terminations, where

B = 2
n∑

i=1

ai (11)

The links between the root vertex and the end nodes represent all the
possible combinations of paths that a travelling signal can trace in B
‘segments’ (term which is here used to denote wave shifts per layer
in the upward or downward direction). Among all the combinations
provided by the tree, only a few of them can be physical solutions to
our problem.



Progress In Electromagnetics Research B, Vol. 38, 2012 357

To discard the meaningless paths, it is therefore necessary to
translate into physical conditions the information provided by the
coefficients an.

To this end, let us assign to each branch b of the tree the scalar
value:

cb =
{

+1 in case of downward branch

−1 in case of upward branch
(12)

It is straightforward that each path connecting the root with the end
nodes can be represented by a vector p = (0, p1, p2, . . . , pB) whose
components are given by the sum of the values of each branch:

pb =
b∑

i=1

ci with b = 1, 2, . . . , B (13)

This kind of formulation allows to directly visualize the interface level
(expressed as an integer number, with the source at level 0) reached
by the corresponding signal at each step of its path.

For the sake of clarity, let us assume that, according to the
classification provided by phase A, we need the propagation path of
the echo featuring two coefficients a1 = 1 and a2 = 2. Its arrival time
would therefore be a certain t∗ = 1 · t1 + 2 · (t2 − t1), with t0 = 0. In
other words, the wave has travelled for 2 segments in air and 4 segments
within the first layer, i.e., it has covered twice the I0–I1 distance (d1)
and four times the thickness of the first layer (d2).

The related binary tree, partly depicted in Fig. 2, would therefore
have 64 end nodes, since B = 2(1 + 2) = 6. As already noticed, only a
subset of these 64 paths that link the root with the terminations has an
effective physical meaning, so we need a suitable procedure to discard
unwanted branches.

- As first step, we are allowed to directly discard the whole upper
part of the tree, which describes the signals departing toward the
upward direction from the antenna, which would not provide any
backscattering.

- Then we have to force the waves, originated at the root level (I0 =
0), to return to the same level (i.e., only signals backscattered to
the antenna are selected), without crossing interfaces I0 = 0 and
I2 = 2. According to our formulation, all the paths {p : p7 6=
0 ∪ pb < 0 ∪ pb > 2} can be disregarded.

- Finally, the constraints given by the ‘echo classification’ step must
be enforced, which set the correct sequence of segments traced by
the echoes. In fact, if we had as unique boundary the number of
segments (B = 6), without considering the proper order of layer
crossings, we would include wrong solutions.
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Figure 2. Binary Decision Tree associated to coefficient a1 = 1,
a2 = 2. Paths linking TX (level 0) and RX (level 0) are marked
with an external box.

For instance, in our example, the paths of six branches that
successfully passed the first two steps are those marked with an
external box in Fig. 2.
According to Eq. (13), they can be expressed as vectors whose
components represent the level (interface) reached by the wave
during its propagation:

p1 = (0, 1, 0, 1, 0, 1, 0) p3 = (0, 1, 2, 1, 0, 1, 0)
p2 = (0, 1, 2, 1, 2, 1, 0) p4 = (0, 1, 0, 1, 2, 1, 0)

Nevertheless, three of them — p1, p3, p4 — do not correspond
to effective solutions, since they respectively represent a signal
reflected three times by the antenna and the first layer (six
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segments in air), and two symmetrical echoes that travel four
segments in air and two segments within the first layer. According
to our mathematical scheme, they would therefore be the solutions
of Eq. (2) featuring the integer coefficients {a1 = 3, a2 =
0} and {a1 = 2, a2 = 1}.
To avoid this commission error, it can be introduced an additional
processing step based on the consideration that each vector p
holds B ordered pairs of the kind {pb−1, pb}, for b = 1, . . . , B.
In fact, if we define Oj,k as the occurrence of the string {j, k}
within a vector, the final propagation path candidates are only
those vectors enforcing the following condition:

Oi−1,i + Oi,i−1 = 2ai 1 ≤ i ≤ n (14)

In the shown example, the only vector satisfying the conditions
O0,1 + O1,0 = 2 · 1 and O1,2 + O2,1 = 2 · 2 is p2, which is therefore the
solution of the problem.

3. RESULTS

The operational involvements of the described technique will be shown
presenting the solution of a demonstrative test case. Let us consider a
scenario consisting of a stack of two slabs and a bulk illuminated by a
pulsed e.m. source and with the following properties:

L1: ε1 = 1, µ1 = 1, σ1 = 0 S/m,
L2: ε2 = 6, µ2 = 1, σ2 = 0 S/m, d2 = 0.08 m
L3: ε3 = 16, µ3 = 1, σ3 = 0 S/m, d3 = 0.049 m
LG: εG = 2, µG = 1, σG = 0 S/m

(15)

The above specifications have been arbitrarily chosen only to easily
discuss the whole processing chain; in fact, such scenario will produce
a backscattered signal composed of four echoes, to be classified as:

1) At time 2.33 ns†, 1 direct reflection:
– DR1 reflected by I1

2) At time 3.64 ns, 1 direct reflection:
– DR2 reflected by I2

3) At time 4.94 ns, 1 direct and 1 multiple reflection:
– DR3 reflected by I3

† the theoretical value of tn, in case of normal incidence, can be expressed as:

tn =
2

c

n∑

i=1

di
√

εi c = speed of light in freespace
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– MR reflected by I2, I1, I2

4) At time 6.25 ns, 4 multiple reflections:
– MR reflected by I3, I2I3

– MR reflected by I2, I1, I2, I1, I2

– MR reflected by I2, I1, I3

– MR reflected by I3, I1, I2

The e.m. characterization of the scenario has been performed with
GPRMax [19], a FDTD-based simulation software. More in detail,
along with the design of a set of media according to specifications
in (15), the source has been modeled within a 2D environment as
a current wire excited by a differentiated gaussian pulse of central
frequency of 2GHz, at distance d1 = 0.35m from I1; the backscattered
signal is then sensed by an ideal probe that measures the e.m. field
at the desired lattice point. The computational volume has been
discretized in 1 × 1mm cells, which means that, for the Courant-
Friedrichs-Lewy condition [20], the time increment dt is bound to the
value of 2.357 · 10−12 s. The number of iterations has been set to 3200,
for an overall simulated time of 7.5 ns.

The signal to be processed is represented in Fig. 3:

1) First of all, it is scanned to detect the arrival time of the first echo
(many techniques could be used to this end, e.g., see [21], which
proposes a development of super-resolution methods particularly
suitable also for the detection of overlapping signals). Due to the
specific geometry of the problem, this first signal is assured to be
the first layer’s bounce and therefore it can be directly classified as
the first direct reflection, DR1. Its arrival time, expressed in terms
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of simulation time steps, corresponds to sample n1 = 990. This
number, multiplied by dt, actually matches the expected value of
2.33 ns. It is straightforward that the unique path associated to
DR1 is p1,1 = (0, 1, 0) featuring the integer coefficient {a1 = 1}.

2) The second echo has a delay n2 = 1544. By simply observing that
n2 is not a multiple of n1, we can positively classify the signal as
DR2, the reflection from interface I2. This signal is represented
by the coefficients {a1 = 1, a2 = 1}, and can be associated to the
path p2,1 = (0, 1, 2, 1, 0).

3) The third echo is received at n3 = 2098. To check whether this
number is a linear combination of n1 and n2, i.e., to solve the
equation

990a1 + 554a2 = 2098 a1, a2 ≥ 0 (16)
it must be applied the ‘echo classification’ procedure shown in
Section 2.1.
The set of solutions of Eq. (16) can be found by constructing the
initial matrix

R =




1 0 0
0 1 0
0 0 N1

990N2 554N2 −2098N2




and then applying the basis reduction algorithm, obtaining

R̂ =

( −277 1
495 2
0 N1

)

As can be noticed, Eq. (16) is consistent and has a particular
solution xT

NH = (1, 2). This is actually the unique solution
of the problem (S = 1), since any multiple of the vector
xT

H = (−277, 495) would violate the constraint of positive
coefficients. As regards path reconstruction, the case {a1 =
1, a2 = 2} has been already studied in Section 2.1, providing a
single vector path p3,1 = (0, 1, 2, 1, 2, 1, 0).
It is worth mentioning that the identification of a MR cannot
anyway exclude the presence of a new incoming DR. In the
considered example, for instance, time discretization causes
sample n3 (corresponding to t3 = 4.95 ns) to coincide with the
arrival time of DR3, the radiation backscattered by interface I3.
The related set of coefficients and path vector are, respectively,
{a1 = 1, a2 = 1, a3 = 1} and p3,2 = (0, 1, 2, 3, 2, 1, 0).
To complete the ‘echo classification’ step it is therefore necessary
to resolve such ambiguity, otherwise the procedure would miss a
new DR to be used within the subsequent calculations.
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To this end, under our hypothesis of loss-less non-dispersive
media, conditions which ensure the invariance of waveforms, some
techniques can be exploited that recursively reconstruct, without
any a priori knowledge, the vertical profile of the multi-layered
medium [22, 23].
At this point, the information provided by the ‘path reconstruc-
tion’ phase becomes essential, since it allows to derive the theoret-
ical amplitudes of the MRs (which depend on layers’ thickness and
permittivity) and remove them from the overall received signal.
In this way, any residual of significant amplitude (e.g.,
greater than a proper threshold that takes into account
computational/approximation errors) would therefore be a
primary reflection and classified as subsequent DR. It is
straightforward that such procedure applies also to the case of
a DR and MR that partially overlap (if they were separated, a
simple signal windowing would be sufficient).

4) Finally, the last detected echo is received at sample n4 = 2652.
Again, the classification step requires the solution of the equation

990a1 + 554a2 + 554a3 = 2652 a1, a2, a3 ≥ 0 (17)

that can be solved with the construction of the basis matrix

R =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 N1

990N2 554N2 554N2 −2652N2




then reduced to

R̂ =




0 −277 1
−1 248 2
1 247 1
0 0 N1




The full set of solutions (for Eq. (17), S = 4) is given by suitably
combining the first two columns of R̂ with the particular solution
xT

NH = (1, 2, 1). By a simple reckoning, it can be easily evinced
that the vector xT

H,2 = (−277, 248, 247) must be directly discarded,
since it will never provide positive coefficients.
Therefore, after applying the branching algorithm, it results that
the remaining three solutions of Eq. (17) are xT

NH+xT
H,1 = (1, 1, 2),

xT
NH − xT

H,1 = (1, 3, 0) and xT
NH + 2xT

H,1 = (1, 0, 3).
We here omit the computation of the BDT for these cases: the
reader would easily find that the four sets of coefficients provide
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the following paths for the corresponding travelling waves:

a1 = 1, a2 = 2, a3 = 1 p4,1 = (0, 1, 2, 3, 2, 1, 2, 1, 0)
p4,2 = (0, 1, 2, 1, 2, 3, 2, 1, 0)

a1 = 1, a2 = 1, a3 = 2 p4,3 = (0, 1, 2, 3, 2, 3, 2, 1, 0)
a1 = 1, a2 = 3, a3 = 0 p4,4 = (0, 1, 2, 1, 2, 1, 2, 1, 0)
a1 = 1, a2 = 0, a3 = 3 p4,5 = null

Accordingly, the last echo is composed of 4 MRs, two symmetrical
waves that reach layer L3 being once reflected by interface I3

(paths p4,1 and p4,2), a wave that penetrates to layer L3 and
is twice reflected by interface I3 (path p4,3), and a wave which
does not go beyond layer L2 and is thrice reflected by interface I2

(path p4,4). The last path (p4,5) could not be computed, since a
zero coefficient in a middle layer has no physical meaning.

A graphical visualization of the above results is illustrated in
Fig. 4, where the contributions to the overall signal are outlined in
different colors, depending on their travelling paths. Such information
could be directly used to enhance the received signal, pointing out the
actual reflections from interfaces.

4. CONCLUSION

The aim of this paper is the development of a new theoretical approach
for the improvement of e.m. inverse scattering by means of multiple
reflection classification. The effect of multiples, in fact, results within
the received signal as additive noise which generally interferes with
the response of primary reflectors and therefore limits the capabilities
of inversion algorithms. To avoid this inconvenience, a classification
technique which exploits the basis reduction algorithm and binary
decision trees has been presented.

A preliminary test performed on FDTD simulated data has shown
its potentialities in discriminating and classifying multiple reflections,
information that could be directly exploited to point out the primary
reflections within the overall signal and boost the inversion process.

The algorithm’s key features can be summarized as follows:

- general-purpose
- no a priori knowledge of the observed scenario required
- reconstruction of wave propagation paths
- only time delay estimation (TDE) required

Although no major issues have emerged within a simulated
environment (as already said, the only limitation regards loss-less and
non-dispersive media), we expect that, in case of experimental samples,
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an inaccurate evaluation of signals’ time delays will reduce the overall
performances.

To this end, we are currently working on a robust TDE algorithm
to be embedded within the processing scheme, as well as on a multi-
view approach that could be used to reduce undesired noisy effects.
Future works will be therefore devoted to assess the effectiveness of
the method within the processing of on-field data.
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