Vol. 124
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-01-18
Proposal of Cylindrical Rolled-Up Metamaterial Lenses for Magnetic Resonance Imaging Application and Preliminary Experimental Demonstration
By
Progress In Electromagnetics Research, Vol. 124, 151-162, 2012
Abstract
In this paper, we propose a cylindrical rolled-up negative permeability metamaterial (MM) lens for magnetic resonance imaging (MRI), and some analyses are given. The proposed cylindrical MM lens is fabricated by rolling a MM slab (constituted with capacitive-loaded copper split rings) into a tube that resembles a hollow ring. It can focus the field of a magnetic line source, which can increase the penetration depth and improve the sensitivity of a surface coil. The proposed cylindrical MM lens can also improve the discrimination of the signals coming from two independent sources. A clinical experiment is carried out in a General Electric Signa 1.5 T MRI system in order to verify the focusing ability of the proposed device.
Citation
Yihong Xie, Jianfeng Jiang, and Sailing He, "Proposal of Cylindrical Rolled-Up Metamaterial Lenses for Magnetic Resonance Imaging Application and Preliminary Experimental Demonstration," Progress In Electromagnetics Research, Vol. 124, 151-162, 2012.
doi:10.2528/PIER11121402
References

1. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Letter, Vol. 85, 3966, 2000.
doi:10.1103/PhysRevLett.85.3966

2. Hornak, J. P., "The Basics of MRI,", URL, http://www.cis.rit.edu/htbooks/mri/index.html, 1996.

3. Freire, M. J., L. Jelinek, R. Marques, and M. Lapine, "On the applications of μ= -1 metamaterial lenses for magnetic resonance imaging," Journal of Magnetic Resonance, Vol. 203, 81, 2010.
doi:10.1016/j.jmr.2009.12.005

4. Freire, M. J., R. Marques, and L. Jelinek, "Experimental demonstration of a μ= -1 metamaterial lens for magnetic resonance imaging," Applied Physics Letter, Vol. 93, 231108, 2008.
doi:10.1063/1.3043725

6. Wiltshire, M. C. K., J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, "Microstructured magnetic materials for RF flux guides in magnetic resonance imaging," Science, Vol. 291, No. 5505, 2001.
doi:10.1126/science.291.5505.849

7. Radu, X., D. Garray, and C. Craeye, "Toward a wire medium endoscope for MRI imaging," Metamaterials, Vol. 3, No. 2, 90-99, 2009.
doi:10.1016/j.metmat.2009.07.005

8. Wiggins, G. C., J. R. Polimeni, A. Potthast, M. Schmitt, V. Alagappan, and L. L. Wald, "96-channel receive-only head coil for 3 Tesla: design optimization and evaluation," Magnetic Resonance in Medicine, Vol. 62, No. 3, 754-762, 2009.
doi:10.1002/mrm.22028

9. Fear, E. C., X. Li, S. C. Hagness, and M. A. Stuchly, "Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions," IEEE Transactions on Biomedical Engineering, Vol. 49, No. 8, 2002.
doi:10.1109/TBME.2002.800759

10. Mohsin, S. A., N. M. Sheikh, and U. Saeed, "MRI induced heating of deep brain stimulation leads: Effect of the air-tissue interface," Progress In Electromagnetics Research, Vol. 83, 81-91, 2008.
doi:10.2528/PIER08040504

11. Insko, E. K., M. A. Elliott, J. C. Schotland, and J. S. Leigh, "Generalized reciprocity," Journal of Magnetic Resonance, Vol. 131, No. 111, 1998.

12. Baena, J. D., L. Jelinek, R. Marques, and M. Silveirinha, "Unified homogenization theory for magnetoinductive and electromagnetic waves in split-ring metamaterials," Physical Review A, Vol. 78, 013842, 2008.
doi:10.1103/PhysRevA.78.013842

13. Rennings, A., P. Schneider, S. Otto, D. Erni, C. Caloz, and M. E. Ladd, "A CRLH zeroth-order resonant antenna (ZORA) with high near-¯eld polarization purity used as an RF coil element for ultra high field MRI," Metamaterials, 13-16, 2010.

14. Gong, Y. and G. Wang, "Superficial tumor hyperthermia with flat left-handed metamaterial lens," Progress In Electromagnetics Research, Vol. 98, 389-405, 2009.
doi:10.2528/PIER09091401

15. Lapine, M., L. Jelinek, M. J. Freire, and R. Marques, "Realistic metamaterial lenses: Limitations imposed by discrete structure," Physical Review B, Vol. 82, 165124, 2010.
doi:10.1103/PhysRevB.82.165124

16. Sydoruk, O., E. Tatartschuk, E. Shamonina, and L. Solymar, "Resonant frequency of singly split single ring resonators: An analytical and numerical study," Metamaterials, 632-634, 2008.

17. Algarin, J. M., M. J. Freire, M. A. Lopez, M. Lapine, P. M. Jakob, V. C. Behr, and R. Marques, "Analysis of the resolution of split-ring metamaterial lenses with application in parallel magnetic resonance imaging," Applied Physics Letter, Vol. 98, 014105, 2011.
doi:10.1063/1.3533394

18. Joines, W. T., Y. Zhang, C. Li, and R. L. Jirtle, "The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz," Medical Physics, Vol. 21, 547, 1994.