Vol. 29
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-02-07
A Novel Four Layer Metallization for Microwave Integrated Circuits
By
Progress In Electromagnetics Research Letters, Vol. 29, 175-184, 2012
Abstract
In order to overcome the problems facing Cr-Cu-Au metallization, such as discoloration, diffusion of Cu into Au, a four-layer metallization Cr-Cu-NiP-Au is demonstrated on alumina substrate for microwave integrated circuit (MICs). A amorphous and nonmagnetic NiP barrier layer is used to avoid the diffusion of Cu into Au through the grain boundaries, which are the low activation energy path for diffusion at moderate temperature. In this view, properties of Cr-Cu-NiP-Au metallization, such as sheet resistance, solderability, bondability and adhesion strength, are evaluated. Further integrity of Cr-Cu-NiP-Au structure is evaluated by subjecting to this structure to multiple temperature cycles test. Visual observation is carried our before and after the thermal cycling test. No degradation is observed as the consequence of thermal cycling test. Test and evaluation are carried out for a multi-section broadband power divider (1 : 2) on this metallization (metal thickness 12-12.5 microns) in the 0-6 GHz frequency range. Insertion loss, return loss and isolation are comparable with Cr-Cu-Au (metal thickness 5.0-6.0 microns). Performance of the power divider and properties of this metallization system reveal its novelty over the existing.
Citation
Rakesh Kumar Sharma, Sandeep Patel, Arun Bindal, and Kamlesh C. Pargaien, "A Novel Four Layer Metallization for Microwave Integrated Circuits," Progress In Electromagnetics Research Letters, Vol. 29, 175-184, 2012.
doi:10.2528/PIERL11120607
References

1. Puri, V., Effect of metallization process on the performance of passive microstripline circuits Technology Letters, Vol. 5, No. 11, 585-590, 1992.

2. Abel, L., et al. "Electronic Materials Handbook,", Vol. 1, Packaging, ASM International, 1989.

3. Plummet, J. D., M. D. Deal, and P. B. Griffin, Silicon VLSI Technology, 695, Upper Saddle River, Prentice Hall, NJ, 2000.

. Alternative Board Finishes A Publication of the National Electronic Manufacturing Center of Excellence, Electronic Manufacturing Productivity Facility (EMPF), 49, 2000.

5. Diamand, Y. S., et al. Proc. 9 Bienn. Univ. Gov. Ind. Microelectron. Symp., 210-215, IEEE, Piscataway, NJ, 1991.

6. Mahapatra, S. and S. N. Prasad, "A new electroless method for low loss microwave integrated circuits," IEEE Trans. Components, Hybrids Manuj. Technol., Vol. 1, No. 4, Dec. 1978.

7. Coombs Jr., C. F., Printed Circuit Handbook, No. 5th, 1400, McGraw-Hill, New York, United States, 2001.

8. Kishihara, M., et al. "A design of multi-stage, multi-way microstrip power dividers with broadband properties," IEEE MTT-S Digest, 2004.