Vol. 29
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-01-20
Key Design Parameters and Sensor-Fusion for Low-Power Wearable UWB-Based Motion Tracking and Gait Analysis Systems
By
Progress In Electromagnetics Research Letters, Vol. 29, 115-126, 2012
Abstract
Recently, we proposed a wireless ambulatory gait analysis system that provides a high ranging accuracy using ultra-wideband (UWB) transceivers. In this paper, we further investigate the performance of our proposed system including ranging using suboptimal templates, power consumption, and sensor-fusion. We show that the proposed system is capable of providing a 1.1 mm ranging accuracy (1.17 cm for current systems) at a signal-to-noise-ratio (SNR) of 20 dB using suboptimal-based receivers in industry accepted body-area-network UWB channels. For the angular-displacement, our system provides an accuracy that is less than 1o for the knee-flexion angle. This accuracy is superior to the accuracy reported in the literature for current technologies (less than 4o). Finally, we propose the integration of UWB sensors with force sensors. The system performance and design parameters are investigated using simulations and actual measurements. Ultimately, the proposed system is suitable for taking accurate measurements, and for tele-rehabilitation.
Citation
Mohamad Abou El-Nasr, Heba A. Shaban, and R. Michael Buehrer, "Key Design Parameters and Sensor-Fusion for Low-Power Wearable UWB-Based Motion Tracking and Gait Analysis Systems," Progress In Electromagnetics Research Letters, Vol. 29, 115-126, 2012.
doi:10.2528/PIERL11120303
References

1. Zheng, H., N. D. Black, and N. D. Harris, "Position-sensing technologies for movement analysis in stroke rehabilitation," Medical and Biological Engineering and Computing Journal, Vol. 43, No. 4, 413-420, Aug. 2005.
doi:10.1007/BF02344720

2. Goulermas, J., D. Howard, C. Nester, R. Jones, and L. Ren, "Regression techniques for the prediction of lower limb kinematics," Journal of biomechanical engineering, Vol. 127, No. 6, 1020-1024, Nov. 2005.
doi:10.1115/1.2049328

3. Di Renzo, M., R. Buehrer, and J. Torres, "Pulse shape distortion and ranging accuracy in UWB-based body area networks for full-body motion capture and gait analysis," IEEE Global Telecommunications Conference, GLOBECOM '07, 3775-3780, Nov. 26-30, 2007.

4. Zasowski, T. and A. Wittneben, "Performance of UWB receivers with partial CSI using a simple body area network channel model," IEEE Journal on Selected Areas in Communications, Vol. 27, No. 1, 17-26, Jan. 2009.
doi:10.1109/JSAC.2009.090103

5. Yazdandoost , K. Y. and K. S.-Pour, "Channel model for body area network (BAN)," Tech. Rep., Apr. 2009, doc: IEEE P802.15-08-0780-09-0006.

6. Shaban, H., M. Abou El-Nasr, and R. Buehrer, "Toward a highly accurate ambulatory system for clinical gait analysis via UWB radios," IEEE Transactions on Information Technology in Biomedicine, Vol. 14, No. 2, 284-291, Mar. 2010.
doi:10.1109/TITB.2009.2037619

7. Shaban, H., "A novel highly accurate wireless wearable human locomotion tracking and gait analysis system via UWB radios,", Ph.D. Dissertation,Virginia Tech, 2010.
doi:10.1109/TITB.2009.2037619

8. Barker, S., W. Freedman, and H. Hillstorm, "A novel method of producing a repetitive dynamic signal to examine reliability and validity of gait analysis systems," Gait and Postur, Vol. 24, No. 4, 448-452, Dec. 2006.
doi:10.1016/j.gaitpost.2005.09.008

9. Menz, H., M. Latt, A. Tiedemann, M. Kwan, and S. Lord, "Reliability of the GAITRite walkway system for the quantification of temporo-spatial parameters of gait in young and older people," Gait and Posture, Vol. 20, No. 1, 20-25, Aug. 2004.
doi:10.1016/S0966-6362(03)00068-7

10. Sangyoub , L., "Design and analysis of ultra-wide bandwidth impulse radio receiver,", Ph.D. dissertation, Southern California University, 2002.

11. Dederer, J., B. Schleicher, F. De Andrade Tabarani Santos, A. Trasser, and H. Schumacher, "Fcc compliant 3.1-10.6 GHz UWB pulse radar system using correlation detection," IEEE/MTT-S International Microwave Symposium, 1471-1474, Jun. 2007.
doi:10.1109/MWSYM.2007.380530

12. Reed, J. H., "An Introduction to Ultra Wideband Communication Systems," Prentice Hall, New Jersey, 2005.

13. Ryckaert, J., M. Verhelst, M. Badaroglu, S. D'Amico, V. De Heyn, C. Desset, P. Nuzzo, B. Van Poucke, P. Wambacq, A. Baschirotto, and W. Dehaene, "A CMOS ultra-wideband receiver for low data-rate communication," IEEE Journal of Solid-State Circuits, Vol. 42, No. 11, 2515-2527, Nov. 2007.
doi:10.1109/JSSC.2007.907195

14. Heydari, P., "A study of low-power ultra wideband radio transceiver architectures," IEEE Wireless Communications and Networking Conference, Vol. 2, 758-763, Mar. 2005.
doi:10.1109/WCNC.2005.1424603

15. Verhelst, M., W. Vereecken, M. Steyaert, and W. Dehaene, "Architectures for low power ultra-wideband radio receivers in the 3.1-5 GHz band for data rates < 10 Mbps," ISLPED '04: Proceedings of the 2004 International Symposium on Low Power Electronics and Design, 280-285, 2004.
doi:10.1145/1013235.1013305

16. Newaskar, P., R. Blazquez, and A. Chandrakasan, "A/D precision requirements for an ultra-wideband radio receiver," IEEE Workshop on Signal Processing Systems, (SIPS '02), 270-275, Oct. 16-18, 2002.

17. Verhelst, M., et al. "Design of an energy-efficient pulsed UWB receiver," Proceedings of AACD Workshop, 2006.

18. Das, A., H. Bhasin, and S. Giduturi, "A 10mW 9.7ENoB 80MPS pipeline ADC in 65nm CMOS process without any special mask requirement and with single 1.3V supply,", 165-168, Sept. 2009.

19. Goldberger, A. L., L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley, "PhysioBank, physiotoolkit, and physioNet: Components of a new research resource for complex physiologic signals," Circulation, Vol. 101, No. 23, e215-e220, Jun. 13, 2000.

20. Vaughan, C., "GaitCD,", CD-ROM, Cape Town, South Africa, 1999.