Vol. 29
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-01-20
Compact Bandpass Filter with Wide Upper-Stopband Based on Spiral-Shaped Resonators and Spur-Lines
By
Progress In Electromagnetics Research Letters, Vol. 29, 87-95, 2012
Abstract
A novel compact bandpass filter (BPF) with wide upper-stopband has been proposed in this paper. The structure is based on spiral-shaped resonators. Cross coupling is used to generate two transmission zeros at the lower and upper stopbands. Therefore, the out-of-band performance is improved. In addition, two spur-lines are adopted in the feed lines to reject the spurious response. The central frequency f0 of this filter is at 2.45 GHz with a minimum insertion loss of less than 1 dB and a 3 dB bandwidth of 12.5%. Four transmission zeros are located at 2 GHz, 3 GHz, 5.5 GHz, and 8 GHz. The attenuation is greater than 20dB in a wide upper stopband up to 9.8 GHz.
Citation
Liang Ma, Kaijun Song, Chunlin Zhuge, and Yong Fan, "Compact Bandpass Filter with Wide Upper-Stopband Based on Spiral-Shaped Resonators and Spur-Lines," Progress In Electromagnetics Research Letters, Vol. 29, 87-95, 2012.
doi:10.2528/PIERL11120203
References

1. Song, K. and Q. Xue, "Inductance-loaded Y-shaped resonators and their applications to filters," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 4, 978-984, 2010.
doi:10.1109/TMTT.2010.2042509

2. Pistono, E., M. Robert, and L. Duvillaret, "Compact fixed and tune-all bandpass filters based on coupled slow-wave resonators," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 6, 2790-2799, 2006.
doi:10.1109/TMTT.2006.874894

3. Song, K. and Q. Xue, "Novel broadband bandpass filters using Y-shaped dual-mode microstrip resonators," IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 9, 548-550, 2009.
doi:10.1109/LMWC.2009.2027058

4. Hong, J.-S. and M. J. Lancaster, "Theory and experiment of novel microwave slow-wave open-loop resonator filters," IEEE Trans. Microw. Theory Tech., Vol. 45, No. 12, 2358-2365, Dec. 1997.
doi:10.1109/22.643844

5. Song, K. and Q. Xue, "Asymmetric dual-line coupling structure for multiple-notch implementation in UWB bandpass filters," Electron. Lett., Vol. 46, No. 20, 1388-1390, 2010.
doi:10.1049/el.2010.1505

6. Hsu, C. L. and J. T. Kuo, "A two-stage SIR bandpass filter with an ultra-wide upper rejection band," IEEE Microw. Wireless Compon. Lett., Vol. 7, No. 1, 34-36, 2007.
doi:10.1109/LMWC.2006.887248

7. Chen, Y. M., S. F. Chang, C. C. Chang, and T. J. Hung, "Design of stepped-impedance combline bandpass filter with symmetric insertion-loss response and wide stopband range," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 10, 2191-2198, 2007.
doi:10.1109/TMTT.2007.906482

8. Deng, P.-H. and P.-T. Chiu, "New bandpass filter using half-wavelength and branch-line resonators," Progress In Electromagnetics Research C, Vol. 16, 241-249, 2010.
doi:10.2528/PIERC10092306

9. Dai, G. and M. Xia, "Novel miniaturized bandpass filter using spiral-shaped resonators and window feed structures," Progress In Electromagnetics Research, Vol. 100, 235-243, 2010.
doi:10.2528/PIER09120401

10. Song, K. and Q. Xue, "Compact ultra-wideband (UWB) bandpass filters with multiple notched bands," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 8, 447-449, 2010.
doi:10.1109/LMWC.2010.2050303

11. Wang, R., L.-S. Wu, and X.-L. Zhou, "Compact folded substrate integrated waveguide cavities and bandpass filter," Progress In Electromagnetics Research, Vol. 84, 135-147, 2008.
doi:10.2528/PIER08071501

12. Li, , L., H. Liu, and B. Teng, "Novel microstrip lowpass filter using stepped impedance resonator and spurline resonator," Microwave and Optical Technology Letters, Vol. 51, No. 1, 196-197, 2009.
doi:10.1002/mop.23993

13. Chu, Q.-X. and H. Wang, "A compact open loop filter with mixed electric and magnetic coupling," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 2, 431-439, 2008.
doi:10.1109/TMTT.2007.914642

14. Wu, H.-W., S.-K. Liu, M.-H. Weng, and C.-H. Hung, "Compact microstrip bandpass filter with multispurious suppression," Progress In Electromagnetics Research, Vol. 107, 21-30, 2010.
doi:10.2528/PIER10061601

15. Song , K. and Y. Fan, "Compact ultra-wideband bandpass filter using dual-line coupling structure," IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 1, 30-32, 2009.
doi:10.1109/LMWC.2008.2008565

16. Yang, R.-Y., H. Kuan, C.-Y. Hung, and C.-S. Ye, "Design of dual-band bandpass filters using a dual feeding structure and embedded uniform impedance resonators," Progress In Electromagnetics Research, Vol. 105, 93-102, 2010.
doi:10.2528/PIER10042504

17. W , L.-S., J.-F. Mao, W. Shen, and W.-Y. Yin, "An extended doublet bandpass filter implemented with microstrip resonator and substrate integrated waveguide cavity," Proceedings of Asia-pacific Microwave Conference 2010 WE4B-2, 2010.

18. Peng, L., C.-L. Ruan, and C.-Y. Ding, "Miniature filter based on metamaterials with transmission zeros and wider upper-stopband performance," 3rd IEEE International Symposium Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, 2009.

19. Hong, , J. S. and M. J. Lancaster, "Microstrip Filters for RF/Microwave Applications," Chapter 8, 235-271, Wiley, New York, 2001.