1. Fang, Q., P. M. Meaney, and K. D. Paulsen, "Viable three-dimensional medical microwave tomography: Theory and numerical experiments," IEEE Trans. on Antennas and Propagation, Vol. 58, No. 2, 449-458, Feb. 2010.
doi:10.1109/TAP.2009.2037691
2. Shea, J. D., P. Kosmas, S. C. Hagness, and B. D. Van Veen, "Three-dimensional microwave imaging of realistic numerical breast phantoms via a multiple-frequency inverse scattering technique," Phys. Med. Biol., Vol. 37, No. 8, 4210-26, Aug. 2010.
3. Cao, C., L. Nie, C. Lou, and D. Xing, "The feasibility of using microwave-induced thermoacoustic tomography for detection and evaluation of renal calculi," Phys. Med. Biol., Vol. 55, No. 17, 5203-12, Sep. 2010.
doi:10.1088/0031-9155/55/17/020
4. Yedlin, M. J., A. Cresp, C. Pichot, I. Aliferis, J. Y. Dauvignac, and S. Gaffet, "Ultra-wideband microwave imaging of heterogeneities," Journal of Applied Geophysics, Vol. 68, No. 1, 17-25, May 2009.
doi:10.1016/j.jappgeo.2008.08.005
5. Remis, R. F. and P. M. Van den Berg, "On the equivalence of the Newton-Kantorovich and distorted Born methods," Inverse Problems, Vol. 16 2000, PII: S0266-5611(00)08356-8..
6. Joachimowicz, N., J. J. Mallorqui, J. C. Bolomey, and A. Broquetas, "Convergence and stability assessment of newton-kantorovich reconstruction algorithms for microwave tomography," IEEE Trans. on Medical Imaging, Vol. 17, No. 4, 562-570, Aug. 1998.
doi:10.1109/42.730401
7. Omrogbe, D. E. A. and A. A. Osagiede, "Preconditionning the modified conjugate gradient method," Global Journal of Mathematical Sciences, Vol. 8, No. 2, 2009.
8. Mhamdi, B., K. Grayaa, and T. Aguili, "Microwave imaging of dielectric cylinders from experimental scattering data based on the genetic algorithms, neural networks and a hybrid micro genetic algorithm with conjugate gradient," Int. J. of Electron. Commun. (AEU), Vol. 65, No. 2, 140-147, Feb. 2011.
doi:10.1016/j.aeue.2010.02.009
9. Mhamdi, B., K. Grayaa, and T. Aguili, "Hybrid of particle swarm optimization, simulated annealing and tabu search for the reconstruction of two-dimensional targets from laboratory-controlled data," Progress In Electromagnetics Research B, Vol. 28, 1-18, 2011.
10. Osher, S. and J. Sethian, "Fronts propagation with curvature dependent speed: algorithms based on Hamilton-Jacobi formula-tions," J. Comput. Phys., Vol. 79, No. 1, 12-49, 1988.
doi:10.1016/0021-9991(88)90002-2
11. Chunming, L., X. Chenyang, G. Changfeng, and D. F. Martin, "Distance regularized level set evolution and its application to image segmentation," IEEE Trans. on Image Processing, Vol. 19, No. 12, 3243-3253, Dec. 2010.
doi:10.1109/TIP.2010.2069690
12. Brodersen, A., K. Museth, S. Porumbescu, and B. Budge, "Geometric Texturing Using Level Sets," IEEE Trans. on Visualization and Computer Graphics, Vol. 14, No. 2, 277-288, Mar.-Apr. 2008.
doi:10.1109/TVCG.2007.70408
13. Young, S. K., K. B. Jin, and P. Il Han, "A level set method for shape optimization of electromagnetic systems," IEEE Trans. on Magnetics, Vol. 45, No. 3, 1466-1469, Mar. 2009.
doi:10.1109/TMAG.2009.2012681
14. Woten, D. A., M. R. Hajihashemi, A. M. Hassan, and M. El-Shenawee, "Experimental microwave validation of level set reconstruction algorithm," IEEE Trans. on Antennas and Propagation, Vol. 58, No. 1, 230-233, Jan. 2010.
doi:10.1109/TAP.2009.2036186
15. Hu, J.-L., Z. Wu, H. McCann, L. E. Davis, and C.-G. Xie, "Quasi-three-dimensional method of moments for analyzing electromagnetic wave scattering in microwave tomography systems," IEEE Sensors Journal, Vol. 5, No. 2, 216-223, Apr. 2005.
doi:10.1109/JSEN.2004.842294
16. Belkebir, K. and M. Saillard, "Special section: Testing inversion algorithms against experimental data," Inverse Problems, Vol. 17, 1565-1571, 2001.
doi:10.1088/0266-5611/17/6/301
17. Osher, S. and R. Fedkiw, "Level set methods and dynamic implicit surface," Applied Mathematical Sciences, Vol. 53, Springer-Verlag, New York, 2003.