Vol. 23
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-02-17
Microwave Imaging of Dielectric Cylinders Using Level Set Method and Conjugate Gradient Algorithm
By
Progress In Electromagnetics Research M, Vol. 23, 195-205, 2012
Abstract
In this paper, a level set method for shape reconstruction problems is considered. By measuring the scattered field, we tried to retrieve the localisation and permittivity of buried objects. The forward problem is solved by the method of moments. For solving the inverse problem, we adopt an evolution approach. Therefore, we introduce a level set technique witch is flexible in handling complex shape changes. A conjugate gradient-based method is used in order to define iterative updates for the level set functions with the goal to minimize a given least squares data misfit functional. In particular, the proposed method is capable of creating new holes inside the design domain, which makes the final design independent of Experimental results demonstrate the feasibility and effectiveness of the proposed technique.
Citation
Khaled Grayaa, "Microwave Imaging of Dielectric Cylinders Using Level Set Method and Conjugate Gradient Algorithm," Progress In Electromagnetics Research M, Vol. 23, 195-205, 2012.
doi:10.2528/PIERM11120201
References

1. Fang, Q., P. M. Meaney, and K. D. Paulsen, "Viable three-dimensional medical microwave tomography: Theory and numerical experiments," IEEE Trans. on Antennas and Propagation, Vol. 58, No. 2, 449-458, Feb. 2010.
doi:10.1109/TAP.2009.2037691

2. Shea, J. D., P. Kosmas, S. C. Hagness, and B. D. Van Veen, "Three-dimensional microwave imaging of realistic numerical breast phantoms via a multiple-frequency inverse scattering technique," Phys. Med. Biol., Vol. 37, No. 8, 4210-26, Aug. 2010.

3. Cao, C., L. Nie, C. Lou, and D. Xing, "The feasibility of using microwave-induced thermoacoustic tomography for detection and evaluation of renal calculi," Phys. Med. Biol., Vol. 55, No. 17, 5203-12, Sep. 2010.
doi:10.1088/0031-9155/55/17/020

4. Yedlin, M. J., A. Cresp, C. Pichot, I. Aliferis, J. Y. Dauvignac, and S. Gaffet, "Ultra-wideband microwave imaging of heterogeneities," Journal of Applied Geophysics, Vol. 68, No. 1, 17-25, May 2009.
doi:10.1016/j.jappgeo.2008.08.005

5. Remis, R. F. and P. M. Van den Berg, "On the equivalence of the Newton-Kantorovich and distorted Born methods," Inverse Problems, Vol. 16 2000, PII: S0266-5611(00)08356-8..

6. Joachimowicz, N., J. J. Mallorqui, J. C. Bolomey, and A. Broquetas, "Convergence and stability assessment of newton-kantorovich reconstruction algorithms for microwave tomography," IEEE Trans. on Medical Imaging, Vol. 17, No. 4, 562-570, Aug. 1998.
doi:10.1109/42.730401

7. Omrogbe, D. E. A. and A. A. Osagiede, "Preconditionning the modified conjugate gradient method," Global Journal of Mathematical Sciences, Vol. 8, No. 2, 2009.

8. Mhamdi, B., K. Grayaa, and T. Aguili, "Microwave imaging of dielectric cylinders from experimental scattering data based on the genetic algorithms, neural networks and a hybrid micro genetic algorithm with conjugate gradient," Int. J. of Electron. Commun. (AEU), Vol. 65, No. 2, 140-147, Feb. 2011.
doi:10.1016/j.aeue.2010.02.009

9. Mhamdi, B., K. Grayaa, and T. Aguili, "Hybrid of particle swarm optimization, simulated annealing and tabu search for the reconstruction of two-dimensional targets from laboratory-controlled data," Progress In Electromagnetics Research B, Vol. 28, 1-18, 2011.

10. Osher, S. and J. Sethian, "Fronts propagation with curvature dependent speed: algorithms based on Hamilton-Jacobi formula-tions," J. Comput. Phys., Vol. 79, No. 1, 12-49, 1988.
doi:10.1016/0021-9991(88)90002-2

11. Chunming, L., X. Chenyang, G. Changfeng, and D. F. Martin, "Distance regularized level set evolution and its application to image segmentation," IEEE Trans. on Image Processing, Vol. 19, No. 12, 3243-3253, Dec. 2010.
doi:10.1109/TIP.2010.2069690

12. Brodersen, A., K. Museth, S. Porumbescu, and B. Budge, "Geometric Texturing Using Level Sets," IEEE Trans. on Visualization and Computer Graphics, Vol. 14, No. 2, 277-288, Mar.-Apr. 2008.
doi:10.1109/TVCG.2007.70408

13. Young, S. K., K. B. Jin, and P. Il Han, "A level set method for shape optimization of electromagnetic systems," IEEE Trans. on Magnetics, Vol. 45, No. 3, 1466-1469, Mar. 2009.
doi:10.1109/TMAG.2009.2012681

14. Woten, D. A., M. R. Hajihashemi, A. M. Hassan, and M. El-Shenawee, "Experimental microwave validation of level set reconstruction algorithm," IEEE Trans. on Antennas and Propagation, Vol. 58, No. 1, 230-233, Jan. 2010.
doi:10.1109/TAP.2009.2036186

15. Hu, J.-L., Z. Wu, H. McCann, L. E. Davis, and C.-G. Xie, "Quasi-three-dimensional method of moments for analyzing electromagnetic wave scattering in microwave tomography systems," IEEE Sensors Journal, Vol. 5, No. 2, 216-223, Apr. 2005.
doi:10.1109/JSEN.2004.842294

16. Belkebir, K. and M. Saillard, "Special section: Testing inversion algorithms against experimental data," Inverse Problems, Vol. 17, 1565-1571, 2001.
doi:10.1088/0266-5611/17/6/301

17. Osher, S. and R. Fedkiw, "Level set methods and dynamic implicit surface," Applied Mathematical Sciences, Vol. 53, Springer-Verlag, New York, 2003.