Vol. 23
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-01-19
Application of Electromagnetic Reciprocity Principle to the Computation of Signal Coupling to Missile-Like Structures
By
Progress In Electromagnetics Research M, Vol. 23, 79-91, 2012
Abstract
Lorentz Reciprocity principle is often used to describe electrical networks and reception/radiation properties of antennas residing in a linear, time-invariant, and symmetric medium. In its reaction integral form, it is usually conceived as a mathematical tool to prove electromagnetic relations. However, reciprocity, more than a mathematical tool, can be used as a powerful alternative to convert a penetration problem into a radiation one for numerical computations and measurements. We review the reciprocity formulation and show simple steps on how to apply reciprocity to penetration problems. Numerical calculations for a wire probe (antenna) inside missile-like structure are carried out for both radiation and its reciprocity formulated penetration problems, and it is shown numerically that results from both methods are identical. One of the advantages of this indirect formulation is that the radiation properties of the structure can be easily measured contrary to the direct measurement of the penetrated signal inside the structure.
Citation
Korkut Yegin, "Application of Electromagnetic Reciprocity Principle to the Computation of Signal Coupling to Missile-Like Structures," Progress In Electromagnetics Research M, Vol. 23, 79-91, 2012.
doi:10.2528/PIERM11120111
References

1. Jackson, J. D., Classical Electrodynamics, John Wiley & Sons, 1998.

2. Collin, R. E., Foundations of Microwave Engineering, IEEE, 2001.
doi:10.1109/9780470544662

3. Collin, R. E., Field Theory of Guided Waves, IEEE, 1990.
doi:10.1109/9780470544648

4. Kraus, J. D. and R. J. Marhefka, Antennas for all Applications, McGraw Hill, 2001.

5. Carson, J. R., "Reciprocal theorems in radio communication," Proc. IRE, Vol. 17, 952-956, Jun. 1929.
doi:10.1109/JRPROC.1929.221772

6. Rumsey, V. H., "Reaction concept in electromagnetic theory," Phys. Rev., Vol. 94, 1483-1491, Jun. 15, 1954.
doi:10.1103/PhysRev.94.1483

7. Cohen, M. H., "Application of the reaction concept to scattering problems," IRE Trans. Antennas Propagat., Vol. 3, 193-199, Oct. 1955.

8. Richmond, J. H., "A reaction theorem and its application to antenna impedance calculations," IRE Trans. Antennas Propagat., Vol. 9, 515-520, Nov. 1961.

9. De Hoop, A. T., "Reciprocity, discretization, and the numerical solution of direct and inverse electromagnetic radiation and scattering problems," Proc. IEEE, Vol. 79, 1421-1430, Oct. 1991.
doi:10.1109/5.104217

10. Baum, C. E. and H. N. Kritikos, Electromagnetic Symmetry, Taylor & Francis, 1995.

11. Yegin, K., "Optimization of wire antennas via genetic algorithms and simplified real frequency technique, and penetration through apertures in axi-symmetric structures,", Ph.D. dissertation, Clemson University 1999.

12. Yegin, K., "Weak penetration and radiation through apertures in conducting bodies of revolution," Turk J. Elec. Eng. & Comp. Sci., Vol. 17, 231-239, 2009.

13. Andreasen, M. G., "Scattering from bodies of revolution," IEEE Trans. Antennas Propagat., Vol. 13, 303-310, Mar. 1965.
doi:10.1109/TAP.1965.1138406

14. Mautz, J. R. and R. F. Harrington, "Radiation and scattering from bodies of revolution," Appl. Sci. Res., Vol. 20, 405-435, Jul. 1969.
doi:10.1007/BF00382412

15. Glisson, A. W. and D. R. Wilton, "Simple and effcient numerical techniques for treating bodies of revolution,", Tech. Rep., Vol. 105, Engineering Experiment Station, Univ. Mississippi, 1982.

16. Harrington, R. F., Time Harmonic Electromagnetic Fields, McGraw Hill, New York, 1961.