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Abstract—Lorentz Reciprocity principle is often used to describe
electrical networks and reception/radiation properties of antennas
residing in a linear, time-invariant, and symmetric medium. In its
reaction integral form, it is usually conceived as a mathematical tool
to prove electromagnetic relations. However, reciprocity, more than a
mathematical tool, can be used as a powerful alternative to convert a
penetration problem into a radiation one for numerical computations
and measurements. We review the reciprocity formulation and show
simple steps on how to apply reciprocity to penetration problems.
Numerical calculations for a wire probe (antenna) inside missile-
like structure are carried out for both radiation and its reciprocity
formulated penetration problems, and it is shown numerically that
results from both methods are identical. One of the advantages of this
indirect formulation is that the radiation properties of the structure
can be easily measured contrary to the direct measurement of the
penetrated signal inside the structure.

1. INTRODUCTION

In classical electromagnetism, Lorentz Reciprocity principle is
conceived as the interchange of time-harmonic sources and their
resultant electromagnetic fields in a medium where its permittivity
and permeability tensors are time-invariant, linear and symmetric.
Reciprocity principle serve a good basis for the proof of various aspects
electromagnetic systems such as symmetry in Green’s functions [1],
scattering matrix formulation of microwave networks [2], propagating
modes in waveguide structures [3], and identical reception and
radiation property of antennas [4].
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Application of reciprocity principle to recast an original problem
to an alternate one can also be very useful for certain type of
problems [5–10]. Electromagnetic signal coupling to a perfect electric
conductor (PEC) through a small opening due to an external source
is one of them [11–12]. In addition, measurement of received signal
inside the PEC object can be very tedious and limited. This is
a common problem in the assessment electromagnetic compatibility
and interference tests of devices. On the other hand, assessment of
the level of interference caused by the interaction of the penetrated
electromagnetic field with the inside circuitry is extremely important
to circuit designers who must assure proper operation of internal
electronic systems. A detailed analysis for the interaction of a
general body with an electromagnetic field and the determination
of penetrated fields can be very complex and highly demanding
of resources. Fortunately, many structures of practical interest
can be modeled as axi-symmetric (or body of revolution), e.g.,
satellites, missiles, etc., at least to a first order approximation of their
actual shape. The theoretical analysis and the numerical solution
procedure for electromagnetic field coupling to a general axi-symmetric
structure have received much attention in the past and very efficient
computational tools have been developed [13–15]. In this investigation,
reciprocity is employed to compute the signal at an interior load which
terminates a coaxial guide (transmission line) connected to a wire
probe antenna mounted axi-symmetrically on a missile-like structure.
This is carried out for both dipole and plane wave illuminations.

A typical example for an axi-symmetric structure, a mock missile,
excited by a known electric field is illustrated in Fig. 1(a). Mock
missiles serve a good basis for the analysis because they are designed
to be immune to jamming signals and only a small amount of
exterior signal can leak in. The received signal strength for specified
illumination and load is of primary interest. The direct approach to
solving this problem would be to determine the current induced on the
wire probe and the body due to plane wave illumination or elementary
dipole excitation and, subsequently, use this current to compute the
signal at YL. Typically, YL represents the admittance of the inside
circuitry seen from the coaxial guide. This current could be found as
the solution of an integral equation which must account for the load
at the terminal end of the coax and its effect at the annular aperture
formed where the coax joins the top-end of the mock missile. The
indirect approach adopted here makes use of the reciprocity theorem
and allows one to compute the signal at the coax terminal load from
knowledge of the field radiated by the mock missile, under the condition
that the excitation results from a current generator impressed at the
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terminal end of the coax. This solution procedure utilizes a simpler
integral equation. It is simpler because the integral equation is not a
vector equation as it would be if the direct approach were followed, and
the surface current to be computed possesses rotational symmetry.

Also, in the direct approach one typically needs to solve the
scattering problem for each angle of illumination in order to determine
the signal strength at the receiving end of the probe. This entails
additional work if the computations are carried out for many degrees
of illumination angle. The same results can be obtained in a much
more efficient way by using the indirect approach, in which case the
integral equation is to be solved only once and the computed electric
current on the structure is repeatedly used to evaluate the signal
strength that would exist in the reception problem for every desired
angle of illumination. Hence, the computational complexity of the
original problem is considerably reduced. Of course, one can improve
the efficiency of the direct approach if one recognizes that the axially
located thin wire couples only to the zero order axi-symmetric currents.

2. RECIPROCITY PRINCIPLE

In its simplest form the reciprocity theorem states that a response
of a system to a source is unchanged when source and measurer are
interchanged [16]. The general form for the time harmonic fields (ejωt

time variation) can be derived from Maxwell’s equations. Let Ea, Ha

and Eb, Hb be the electric and magnetic fields generated by the sources
Ja, Ma and Jb, Mb, of the same frequency and existing in the same
linear medium. Then, the Lorentz reciprocity theorem is

−
∫∫
©
S

(Ea×Hb−Eb×Ha) · n̂dS

=
∫∫∫

V

(Ea · Jb+Hb ·Ma−Eb · Ja−Ha ·Mb)dV (1)

where V is the volume containing the sources and S is the closed surface
bounding this volume.

The axi-symmetric structure of Fig. 1(a) can be either excited by
a plane wave with an arbitrary angle of incidence or by an elementary
dipole moment I` represented by

Jd = I`δ (r− rd) l̂ (2)

and located at an arbitrary point rd in space. An admittance YL

terminates the end of the coax remote from the antenna and inside
the mock-missile. The desired result, as mentioned above, is the signal
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induced in the terminating admittance due to either plane wave or
dipole illumination. In order to apply reciprocity theorem, we now
consider a second source and resulting radiated field. This source is
an ideal current generator of Ig impressed at the terminal end of the
coax. This current generator, located very close to the admittance YL,
produces a signal at the coax which, in turn, excites the antenna and
mock-missile and gives rise to a radiated field which we call Eg, as
suggested in Fig. 1(b). The transmission line model of the coax and
the admittance YL is shown in Fig. 2. The current generator is taken
to be a volume current of density

Jg = −δ (z − zg)
[

Ig

2πρ

]
ρ̂ (3)

impressed near the end of the wire probe at position z = zg as
illustrated in Fig. 1(b).
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Figure 1. The mock-missile. (a) Excited by a plane wave, reception
problem. (b) Excited through a coaxial probe, radiation problem.
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Figure 2. Transmission line model of the coax, the current generator,
load Y and antenna YA.
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Figure 3. (a) A z directed dipole at the origin. (b) A −z directed
dipole on x axis in the far zone creates a plane wave at the origin.

To apply reciprocity, the form of the sources must be known
explicitly. In the case of an elementary dipole, the source is expressed
as in (2). In the case of a plane wave with an arbitrary angle of
incidence, however, the source representation is not as obvious as that
of an elementary dipole. It must be that source which produces the
plane wave of interest in the local vicinity of the body. For a dipole
current moment of I`ẑ at the origin as illustrated in Fig. 3(a), it is
easy to show that in the far zone the electric field is

Eθ = jω µI`
e−jkr

4πr
sin θ (4)

where ω is the angular frequency, µ is magnetic permeability of the
medium, and k represents the wave number. Except on the z axis
when Eθ above is zero, the r component of E is a factor 1/r smaller
than Eθ, so, if the z axis case is excepted, the Eθ above represents the
total far-zone electric field. On the x axis, Eθ(= −Ez) becomes

Eθ = jωµI`
e−jkx

4πx
sin θ (5)
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This has all the properties of a plane wave in the vicinity of the x axis
in the far zone. It is easy to show that a −x directed dipole on the x
axis in the far zone, as depicted in Fig. 3(b), creates a plane wave at
the origin with its E vector in the z direction. The strength and the
phase of this plane wave is

E = jkηI`
ejkx

4πx
(6)

where η represents intrinsic impedance of the medium. We generalize
this notion to an arbitrary incidence angle. A θi directed dipole at a
point

(
ri, θi, φi

)
in the far-zone creates a plane wave in the vicinity of

the origin with strength

E = jkηI`
ejkri

4πri
θ̂i (7)

where the plane wave and the unit vector θ̂ i are as illustrated in
Fig. 4(a) and r i is the distance from the origin to the location of
the dipole. With the dipole located in the xz plane and in the θ̂ i

direction, the incident wave travels inward along the ray in the xz
plane as depicted in Fig. 4(b). If the dipole field is designated Ed,
then the electric field due to the dipole J = I`δ

(
r − ri

)
θ̂i is,

Ed = jkηI`
ejkri

4πri
θ̂i (8)

where ri = ri r̂i, in which r̂i is the outward unit vector along the ray
defined by

(
θi, φi = 0

)
. If we adjust I` to be

I` =
4π

jkη
riεi

θ, (9)

then the dipole creates an electric field

Ed = εi
θ ej k r i

θ̂ i (10)

in the vicinity of origin. The electric field Ed has a strength εi
θ,

propagates along a ray defined by r i, and is directed in the θ̂ i direction.
In summary to create a plane wave of strength εi

θ in the θ̂ i direction
in the local vicinity of the origin, one can place a dipole of current
moment given in (9) at

(
r i, θ i, φ i = 0

)
in the far-zone. The direction

of the dipole is θ̂ i and the plane wave propagates inwardly along the
ray from the origin to

(
r i, θ i, 0

)
. The volume current density of this

dipole is
Jp = I`δ

(
r− ri

)
θ̂i. (11)
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Figure 4. (a) θ̂i directed dipole at the far zone. (b) θ̂i directed dipole
on xz plane at the far zone.

Having obtained appropriate source representations for both types
of excitation, we can now apply the reciprocity theorem by considering
two different experiments. In the first, the remote source radiates a
field causing a voltage VL to appear across the load admittance YL

depicted in Fig. 1(a). Second, the source is removed and current Ig is
impressed at the coax terminals by a current generator as suggested
in Fig. 1(b). This generator excites the coax-fed wire antenna and the
mock-missile and creates an exterior electric field designated Eg. Upon
application of (1) to these sources and fields, one obtains

−
∫∫
©
S

(Eg ×H−E×Hg) · n̂dS =
∫∫∫

V

(Eg · J−E · Jg)dV (12)

where V is the region in which all the sources are enclosed and S is
the closed surface bounding this region. Jg and J are the sources that
produce (Eg, Hg) and (E, H), respectively. V is the volume bounds
the load inside the structure, outside the wire probe antenna and the
body of the axi-symmetric structure, and inside an imaginary sphere
at infinity. Let S = S∞ + SPEC , where S∞ is the sphere at infinity and
SPEC is the remainder of S. Since the wire probe antenna structure
and the axi-symmetric structure are perfectly electric conductors, the
surface integral over SPEC is zero, and, due to the radiation condition,
the integral over the sphere at infinity S∞ is zero too. Therefore the
surface integral in (12) is zero and one is left with∫∫∫

V

(Eg · J−E · Jg)dV = 0 (13)

where E is the electric field caused by a plane wave or an elementary
dipole illuminating the structure and Jg is given by (3). The evaluation
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of (13) may be carried out for both types of excitation. Let’s
first consider the dipole case. Since the elementary dipole Jd =
I`δ (r− rd) l̂ radiating in the presence of the structure is a delta
function, the first term of (13) is evaluated as∫∫∫

V

Eg · JddV =
∫∫∫

V

Eg · l̂ [I`δ (r− rd)]dV = I`Eg (rd) · l̂. (14)

For the case of an incident plane wave with electric field strength
εi
θ in the local vicinity of the origin in θ̂ i direction, we consider an

elementary dipole given by (11) in the θ̂ i direction and the first term
of (17) is∫∫∫

V

Eg · Jp dV =
∫∫∫

V

Eg · q̂i
[
I`δ

(
r− ri

)]
dV = I`Eg

(
ri

)·q̂i. (15)

The coax is operated in a typical way in which all higher order
modes are below cut-off. Thus, the fields and the currents in the coax
are circularly symmetric which implies that E is independent of φ.
Since Jg given by (3) is also a delta function, the second term in (13)
simplifies immediately to

∫∫∫

V

E · JgdV = −Ig

π∫

−π

b∫

a

1
2πρ

ρ̂ ·E (ρ, zg) ρdρdφ

= −Ig

π∫

−π

b∫

a

1
2π

Eρ (ρ, zg) dρdφ = −IgVg (16)

where a is the radius of the inner conductor and b is radius the outer
conductor and Vg is the potential of the coax center conductor relative
to that of the outer conductor and it is expressed as

Vg =

b∫

a

Eρ ( ρ, zg)dρ. (17)

From (14) and (16) it is clear that one can obtain Vg, the voltage
created across the coax by the dipole, from the knowledge of elementary
dipole excitation and the electric field Eg which results from the
current generator applied at the coax terminals. This Vg due to dipole
excitation is denoted as V d

g . Finally, (14) and (16) are inserted to the
integrals involved in reciprocity theorem given by (13), one arrives at

V d
g = −I` l̂ ·Eg(rd)/Ig. (18)
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Similarly, using (15) and (16) in (13), one is able to obtain Vg, from
the knowledge of plane wave illumination and the electric field Eg and
this Vg is denoted as V p

g and it is given by

V p
g = −I` θ̂i ·Eg(ri)/Ig. (19)

3. APPLICATION PROCEDURE OF RECIPROCITY
PRINCIPLE

The procedure for using reciprocity to compute the signal at YL due
to a dipole or plane wave illumination is outlined below.

Step 1: First, a voltage of one volt (VA = 1 V) across the coaxial
aperture is assumed. With this excitation, the current on the wire
antenna and the structure are obtained numerically by solving an
integral equation. From the knowledge of this current, driven by a one
volt generator, one can compute the input impedance of the antenna
YA at the base of the antenna. Since the antenna is driven by the coax,
YA can be viewed as the terminating admittance of the end of the coax
where its center conductor becomes the antenna. With the currents
known on the wire and on the structure, one can easily compute the
radiated electric field due to this source, i.e., Eg in (18) and (19).
However, this is not the correct field because VA is assumed 1 (V). If
Ig can be related to actual VA, then the fields produced by VA can be
used in (18) and (19).

Step 2: From transmission line theory, it can be easily shown that
the current generator causes the voltage VA in the coaxial aperture at
the base of the antenna to be

VA =
(1 + ΓA) e−jβL

(YL + Yo) + (YL − Yo) ΓAe−j2βL
Ig (20)

where β is the propagation factor of the lossless transmission line and
ΓA is the reflection coefficient at the antenna base (seen by the coax).
It is expressed as

ΓA =
Yo − YA

Yo + YA
(21)

where Yo is the characteristic admittance of the line and is taken as
Yo = 1/50

(
Ω−1

)
throughout the computations. Now, the value of Ig

is known due to any VA.
Step 3: The actual voltage driving the antenna is VA, which now

can be used to compute the actual currents on the structure, and the
radiated field caused by the current generator. Recall that the currents
and the fields are computed with the assumption of VA = 1 (V) so one
can simply scale all the currents and field values by the ratio of VA : 1.
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The last step is to compute the voltage Vg (V d
g or V p

g ) across the load
YL using (18) or (19). The final expression for Vg is

Vg =
−I` û ·Eg (ru) (1 + ΓA) e−jβL

VA [(YL + Yo) + (YL − Yo) ΓAe−j2βL]
(22)

where û is either l̂ of (2) or θ̂ i of (11), and ru is either rd or r i. As
(22) represents most general case, for numerical computations, VA is
taken 1, which enables one to calculate YA (and ΓA) and Vg easily for
any value of dipole location or any angle of plane wave incidence. It is
important to restate that VA can take any arbitrary value other than 1,
and Vg will remain unchanged because it is scaled with VA.

4. NUMERICAL RESULTS AND DISCUSSION

Consider the mock missile as illustrated in Fig. 5. The body of missile-
like structure comprises a straight, hollow, cylindrical section with a
tapered upper end and a closed bottom end. The structure possesses
a bulk-head at the place where the cylindrical section joins to the
nose of the mock-missile. The wire probe is mounted at the center
of the bulk-head and receives signal through a circular opening on
top part of the mock-missile. The antenna is actually the extension
of a coaxial cable center conductor whose opposite end in the missile
interior terminates in a load admittance YL, which in frequency domain
represents the input admittance of an instrument inside the missile.
The receiver is inside the missile, and thereby is shielded from the
field in the exterior region. All numerical simulations are carried
out using a boundary element integral equation solver (Method of
Moments) for axi-symmetric structures [13–15]. The numerical results
using two different formulations of the same problem are compared to
each other. The direct solution technique, which solves the scattering
problem, is designated as lumped-load method whereas the indirect
solution technique which uses the reciprocity approach, is designated
as reciprocity method. The magnitude of the received signal normalized
to the incident field at 100MHz is computed for various angles of
illumination using both methods. The results are depicted in Fig. 6(a).
Excellent agreement is observed between the two methods. The same
computation is performed at a higher frequency, 300 MHz. The results
are depicted in Fig. 6(b). Again, both methods produced almost
identical results. When the values of load voltage at two different
frequencies are compared to each other, it is observed that the signal
coupling to load becomes a little stronger at 300 MHz that at 100 MHz.

Next, an elementary dipole illumination is considered. The dipole
is located on xz plane and it is displaced along a line parallel to z
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Figure 5. The cross sectional view of the structure (dimensions
are: h = 5.35 cm, hb = 118.7 cm, ha = 14.6 cm, a = 0.0787 cm,
b = 7.875 cm, c = 0.2286 cm, d = 4.25 cm, e = 2.25 cm.)
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Figure 6. Plane wave illuminations. (a) 100 MHz. (b) 300MHz.
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Figure 7. Dipole illumination with dipole being located on xz plane
at x = 32.875 cm, but is displaced along a line parallel to z axis.
(a) 100 MHz. (b) 300 MHz.

axis. The variation of load voltage with the dipole displacement is
studied. The results are obtained at operation frequencies of 100 MHz
and 300 MHz and illustrated in Figs. 7(a) and 7(b). Again an excellent
agreement is observed between the two methods.

5. CONCLUSIONS

We have shown that a penetration problem can be cast into a radiation
one using Lorentz reciprocity principle. An axi-symmetric mock-
missile is chosen for the application and comparisons are made using
direct (lumped element load) and indirect (reciprocity) methods. The
indirect approach produced almost identical results with that of direct
approach using scattering formulation of the problem. Consequently,
we claim that reciprocity method is exact and rigorous, and it is more
than a mathematical tool to prove electromagnetic relations, but rather
an applied tool, particularly for the computation of signal coupling
to axi-symmetric structures. Indirect formulation using reciprocity
is also favorable in measurements of weak signal coupling to general
structures (dielectric or perfect electric conductors) penetrated fields
because radiation properties of a structure is much easier to measure
than those of penetrated fields into the structure.
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