Vol. 24
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-03-12
Scattering of an Arbitrarily Oriented Electric Dipole Field from an Infinitely Long dB Circular Cylinder
By
Progress In Electromagnetics Research M, Vol. 24, 15-27, 2012
Abstract
Analytic expressions for the scattered magnetic vector potential from an infinitely long DB circular cylinder are presented. An arbitrarily oriented electric dipole is considered as a source of excitation that induces surface currents on the DB circular cylinder. Approximate far field expressions for magnetic vector potential are also derived in this setting. Numerical results of the scattering from the DB cylinder are also presented and compared with those of the PEC cylinder.
Citation
Abid Mahmood, Ahsan Illahi, Aqeel Abbas Syed, and Qaisar Naqvi, "Scattering of an Arbitrarily Oriented Electric Dipole Field from an Infinitely Long dB Circular Cylinder," Progress In Electromagnetics Research M, Vol. 24, 15-27, 2012.
doi:10.2528/PIERM11120105
References

1. Sihvola, A., H. Wallen, P. Yla-Oijala, J. Markkanen, and I. V. Lindell, "Material realization of extreme electromagnetic boundary conditions and metasurfaces," URSI GASS, paper B05.2, ISBN 978-1-4244-5118-0, Istanbul, 2011.

2. Rumsey, V. H., "Some new forms of Huygens principle," IRE Trans. Antennas Progag., Vol. 7, 103-116, 1959.
doi:10.1109/TAP.1959.1144766

3. Lindell, I. V. and A. Sihvola, "Electromagnetics boundary conditions defined in terms of normal field components," IEEE Trans. on Ant. and Propag., Vol. 58, 1128-1135, 2010.
doi:10.1109/TAP.2010.2041149

4. Lindell, I. V. and A. Sihvola, "Electromagnetics boundary and its realization with anisotropic metamaterial," Phy. Rev. E, Vol. 79, Article Number: 0266604, 2009.

5. Lindell, I. V. A. Sihvola, "Spherical resonator with DB boundary condition," Progress In Electromagnetics Research Letters, Vol. 6, 131-137, 2009.
doi:10.2528/PIERL09010505

6. Lindell, I. V. and A. Sihvola, "Circular waveguide with DB boundary conditions," IEEE Trans. Microwave Theory and Techniques, Vol. 58, 903-909, 2010.
doi:10.1109/TMTT.2010.2042638

7. Naqvi, A., F. Majeed, and Q. A. Naqvi, "Planar DB boundary placed in chiral and chiral nihility metamaterial," Progress In Electromagnetics Research Letters, Vol. 21, 41-48, 2011.

8. Yaghjian, A. D. and S. Maci, "Alternative derivation of electromagnetic cloak and concentrators," New J. Phys., Vol. 10, 115022, 2008.
doi:10.1088/1367-2630/10/11/115022

9. Kildal, P. S., "Fundamental properties of canonical soft and hard surfaces, perfect magnetic conductors and the newly introduced DB surface and their relation to different practical applications included cloaking," Proc. ICEAA, 607-610, 2009.

10. Naqvi, Q. A., A. A. Rizvi, and M. A. Ashraf, "Asymptotic solutions for the scattered field of plane wave by a cylindrical obstacle buried in a grounded dielectric layer," Progress In Electromagnetics Research, Vol. 20, 249-262, 1998.
doi:10.2528/PIER98031100

11. Naqvi, Q. A. and A. A. Rizvi, "Low contrast circular cylinder buried in a grounded dielectric layer," Journal of Electromagnetic Waves and Applications, Vol. 12, No. 11, 1527-1536, 1998.
doi:10.1163/156939398X00458

12. Naqvi, Q. A. and A. A. Rizvi, "Scattering from a cylindrical object buried in a geometry with parallel plane interfaces," Progress In Electromagnetics Research, Vol. 27, 19-35, 2000.
doi:10.2528/PIER98120902

13. Naqvi, Q. A., A. A. Rizvi, and Z. Yaqoob, "Scattering of electromagnetic waves from a deeply buried circular cylinder," Progress In Electromagnetics Research, Vol. 27, 37-59, 2000.
doi:10.2528/PIER99061401

14. Carter, P. S., "Antenna arrays around cylinders ," Proc. IRE, Vol. 31, 671-693, 1943.
doi:10.1109/JRPROC.1943.233684

15. Luke, W. S., "Electric dipoles in the presence of elliptic and circular cylinders," J. Appl. Phys., Vol. 22, 14-19, 1951.
doi:10.1063/1.1699813

16. Wait, J. R., Electromagnetic Radiation from Cylindrical Structures, 76-87, Pergamon Press, 1959.

17. Basso, E., M. B. Gay Ducati, E. G. de-Oliveira, and J. T. de-Santana Amaral, "Dipole scattering amplitude in momentum space," Brazilian Journal of Physics, Vol. 38, No. 3B, 2008.
doi:10.1590/S0103-97332008000400019

18. Illahi, A., Q. A. Naqvi, and K. Hongo, "Scattering of dipole field by a finite conducting and finite impedance cylinder," Progress In Electromagnetics Research M, Vol. 1, 139-184, 2008.
doi:10.2528/PIERM08013001

19. Illahi, A., M. Afzaal, and Q. A. Naqvi, "Scattering of dipole field by a perfect electromagnetic conductor cylinder," Progress In Electromagnetics Research Letters, Vol. 4, 43-53, 2008.
doi:10.2528/PIERL08051601