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Abstract—Analytic expressions for the scattered magnetic vector
potential from an infinitely long DB circular cylinder are presented. An
arbitrarily oriented electric dipole is considered as a source of excitation
that induces surface currents on the DB circular cylinder. Approximate
far field expressions for magnetic vector potential are also derived in
this setting. Numerical results of the scattering from the DB cylinder
are also presented and compared with those of the PEC cylinder.

1. INTRODUCTION

In electromagnetics, variety of boundary conditions are used to
characterize the scattering from objects of varying materials and
geometry. For a perfect electric conductor (PEC) boundary, condition
forces the tangential components of total electric field to be zero. Its
dual case is the perfect magnetic conductor (PMC) with vanishing
tangential components of the total magnetic field. PEC and PMC are
special cases of more general impedance surface which can be described
through the dyadic relation between the tangential components of
electric and magnetic fields. In connection with metamaterials studies,
more complex metasurfaces have also been suggested. Among those are
the the perfect electromagnetic conductor (PEMC) surface and the so-
called DB boundary with its generalization [1]. It is useful to mention
here that all boundaries except DB, described above, deal with the
tangential components of electric and/or magnetic fields. In contrast,
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the DB boundary incorporates conditions on the normal components
of flux densities D and B. The idea of DB boundary conditions was
first proposed by Rumsey [2]. The boundary conditions for the DB
interface are given below [3].

n̂ ·D = 0, n̂ ·B = 0

where n̂ is a unit vector normal to the surface.
The DB boundary has some interesting properties including the

one which states that surface becomes transparent for the normal
incident plane wave. Hence, DB boundary can act as a spatial filter [3].
Such a filter would allow penetration of incoming electromagnetic
waves with normal incidence (regardless of the polarization) only.
All the waves with other angles of incidence will experience total
reflection from a DB boundary. Lindell and Sihvola showed a planar
DB boundary, when excited by transverse electric (TE) and transverse
magnetic (TM) modes in free space, behaves like a PEC interface for
TE mode of excitation and PMC interface for TM mode of excitation,
respectively [4]. In [5], Lindell and Sihvola discussed a spherical
resonator with DB boundary conditions. In [6], circular waveguide
with DB boundary conditions has been studied by Lindell and Sihvola.
Naqvi, et al. in [7] observed that DB interface is a reflector which can
yield non-zero power propagation in chiral nihility metamaterial (ε = 0,
µ = 0, κ 6= 0) where κ represents chirality parameter and ε and µ
are relative permittivity and permeability of the medium, respectively.
Despite simplicity in analysis, DB boundary has remarkable in various
applications including the subject of invisibility cloak [8, 9].

Scattering of electromagnetic waves from a circular cylinder has
been studied by various researchers during past few decades [10–18].
The cylinder is considered a model representative scatterer and it
has been frequently used as a reference to characterize the peculiar
and distinctive scattering properties of various targets like aircrafts,
submarines and missiles etc.. In this background, the scattering of
dipole field from cylinders is a topic of great practical interest [14–
18]. It has been shown by Carter [14] that the directional properties
of linear antennas are affected greatly in the presence of circular
cylinder of proper radius. Carter in [14] argued that when an array
of such antennas is fed with proper phase more directive patterns
are obtained. Luke derived similar results using Green function
method [15]. In [16], Wait considered a radial dipole in cylindrical
wedge region and compared theoretical and experimental radiations
patterns in the principle plane. Basso et al. determined the dipole
scattering amplitude in momentum space [17]. Illahi, et al. discussed
the electromagnetic scattering from an infinitely long perfect electric
conductor (PEC) cylinder/perfect electromagnetic conductor (PEMC)
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cylinder due to an arbitrarily oriented dipole [18, 19]. Illahi, et al.
also discussed that the scattering of dipole field from PEMC circular
cylinder has many applications as a non reciprocal scatterer and
polarization control of antenna.

The aforementioned importance of DB boundary, circular cylinder
and dipole motivated the authors to analyze the problem of
electromagnetic scattering from a DB circular cylinder. For this
purpose an electric dipole is taken as a source of excitation. To simplify
our problem, we have considered an infinitely long DB circular cylinder.
Electric dipole produces surface currents on DB circular cylinder. The
scattered magnetic vector potential is calculated at the far-zone region
after applying the method of steepest descent.

2. PROBLEM FORMULATION

A DB circular cylinder of radius a and infinite extent in z-direction is
placed in free space, as depicted in Figure 1. The constitutive relations
for fields in free space are given as

D = εoE B = µoH
where µo and εo represent permittivity and permeability, of free
space, respectively. An electric dipole located at ro = (ρo, φo, zo) is
considered as a source of excitation.

We employ the concept of vector potential to study the above
scattering problem. We refer to the magnetic vector potential, in
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Figure 1. Scattering of an arbitrarily oriented electric dipole field
from infinitely long DB circular cylinder.
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the absence of DB cylinder, as the primary magnetic vector potential,
while the contribution due to the presence of cylinder is termed as the
secondary magnetic vector potential. The magnetic vector potential is
related to the electric and magnetic fields by the following relations

B = ∇×A, E = −jω
{
A +

1
k2
∇∇ ·A

}
(1)

where k = ω
√

µoεo and ω denotes angular frequency. The above fields
related with the magnetic vector potential must satisfy the Maxwell
equations

∇×E = −jωµ0H ∇×H = jωε0E + Jδ(r− r0) (2)

In the above equations, J is the current density of the source and
δ(r− r0) represents the Dirac’s delta function describing the location
of the dipole source. The radiated (primary) magnetic vector potential
for such a source is derived in [18, 19]. We find, in this paper, the
magnetic vector potential in the presence of DB cylinder. This can be
accomplished by determining the so-called secondary magnetic vector
potential due to the presence of DB circular cylinder. For this purpose,
each component of magnetic vector potential is expressed in terms of
Fourier transform with respect to z-parameter as

Al(ρ, φ, z)=
1

2π

∞∑
n=−∞

exp
(
jn(φ−φo)

)∫ ∞

−∞
Ãln(ρ, h)exp

(
−jh(z−zo)

)
dh, l=ρ, φ, z (3)

where Ãln(ρ, h) is the Fourier transformed coefficients of magnetic
vector potential. The case of ρ-directed electric dipole is presented
first.

2.1. ρ-Directed Dipole Magnetic Vector Potential Analysis

Consider a ρ-directed electric dipole located at point ro = (ρo, φo, zo)
as a source of excitation. The Fourier transformed magnetic vector
potential is divided into two parts as follows [18, 19]

Ãρn(ρ, h) = Ã0
ρn(ρ, h) + Ã1

ρn(ρ, h) (4)

Ãφn(ρ, h) = Ã0
φn(ρ, h) + Ã1

φn(ρ, h) (5)

where Ã0
ρn(ρ, h) and Ã0

φn(ρ, h) represent the transformed functions in
the absence of DB cylinder and have been derived in [18, 19], whereas
Ã1

ρn(ρ, h) and Ã1
φn(ρ, h) are those pertaining to the presence of the DB

cylinder. These later functions are considered as secondary magnetic
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vector potential contribution. The primary magnetic vector potentials
as given in [18, 19] are

Ã0
ρn(ρ, h) =

µJρ

4j

{
J ′n(χρ)H ′(2)

n (χρ0)+
n

χρ
J (2)

n (χρ)
n

χρ0
H(2)

n (χρ0)
}

(6)

Ã0
φn(ρ, h) =

µJρ

4

{
n

χρ0
H(2)

n (χρ0)J ′n(χρ)+H ′(2)
n (χρ0)

n

χρ
Jn(χρ)

}
. (7)

The expression for the secondary magnetic vector potential contribu-
tion can be written as

Ã1
ρn(ρ, h) =

µJρ

4j

{
anH ′(2)

n (χρ) + bn
n

χρ
H(2)

n (χρ)
}

(8)

Ã1
φn(ρ, h) =

µJρ

4

{
cnH ′(2)

n (χρ) + dn
n

χρ
H(2)

n (χρ)
}

(9)

with χ =
√

k2 − h2, and an, bn, cn, dn the unknown coefficients to be
determined by applying the boundary conditions at ρ = a, i.e.,

n̂·
(
Dinc + Dsca

)
= 0 (10)

n̂·
(
Binc + Bsca

)
= 0 (11)

where n̂ is a unit vector normal to the surface. The electric and
magnetic flux densities D and B can be obtained using (2). By
applying the boundary conditions (10)–(11) at ρ = a the unknown
coefficients are found to be

an =
−

{
a2χ2J ′′′n (χa)+aχJ ′′n(χa)+

(
k2a2−1

)
J ′n(χa)

}
H
′(2)
n (χρo)

a2χ2H
′′′(2)
n (χa) + χaH

′′(2)
n (χa)+

(
k2a2 − 1

)
H
′(2)
n (χa)

(12)

bn = −
n2

ρ0
H

(2)
n (χρ0)

{
aJ ′′n(χa)− 1

χJ ′n(χa) +
(

k2a
χ2

)
Jn(χa)

}

nχaH
′′(2)
n (χa)− nH

′(2)
n (χa) +

(
nk2a

χ

)
H

(2)
n (χa)

(13)

cn = −
n
ρo

H
(2)
n (χρo)

{
aJ ′′n(χa)− 1

χJ ′n(χa)
}

χaH
′′(2)
n (χa)−H

′(2)
n (χa)

(14)

dn = −
nH

′(2)
n (χρo)

{
J ′n(χa)−

(
2

χa

)
Jn(χa)

}

nH
′(2)
n (χa)−

(
2n
χa

)
H

(2)
n (χa)

(15)
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After incorporating the values of an, bn, cn and dn in Equations (8) and
(9) and then using these equations together with the Equations (4)–(7)
in Equation (3), the magnetic vector potentials for two regions in case
of ρ-directed dipole can be written as
Case 1 (ρ < ρo)

Aρ =
µJρ

8πj

∞∑
n=−∞

exp
(
jn(φ−φo)

)∫ ∞

−∞

{
J ′n(χρ)H ′(2)

n (χρo)+
n

χρ
Jn(χρ)

n

χρo

H(2)
n (χρo) + anH ′(2)

n (χρ)+bn
n

χρ
H(2)

n (χρ)
}

exp
(
−jh(z−zo)

)
dh

Aφ =
µJρ

8π

∞∑
n=−∞

exp
(
jn(φ−φo)

)∫ ∞

−∞

{ n

χρo
H(2)

n (χρo)J ′n(χρ)+H ′(2)
n (χρo)

n

χρ

Jn(χρ) + cnH ′(2)(χρ) + dn
n

χρ
H(2)

n (χρ)
}

exp
(
− jh(z − zo)

)
dh

Case 2 (ρ > ρo)

Aρ =
µJρ

8πj

∞∑
n=−∞

exp
(
jn(φ−φo)

)∫ ∞

−∞

{
J ′n(χρo)H ′(2)

n (χρ)+
n

χρo
Jn(χρo)

n

χρ

H(2)
n (χρ)+anH ′(2)

n (χρ)+bn
n

χρ
H(2)

n (χρ)
}

exp
(
−jh(z−zo)

)
dh

Aφ =
µJρ

8π

∞∑
n=−∞

exp
(
jn(φ−φo)

)∫ ∞

−∞

{ n

χρo
H ′(2)

n (χρ)Jn(χρo)+H(2)
n (χρ)

n

χρ

J ′n(χρo)+cnH ′(2)(χρ) + dn
n

χρ
H(2)

n (χρ)
}

exp
(
− jh(z−zo)

)
dh

2.2. φ-directed Dipole Magnetic Vector Potential Analysis

The primary vector potentials in case of φ-directed dipole can be given
as [18, 19]

Ã0
ρn(ρ, h) = −µJφ

4

{
n

χρ0
J ′n(χρ)H(2)

n (χρ0)+
n

χρ
Jn(χρ)H ′(2)

n (χρ0)
}

(16)

Ã0
φn(ρ, h) =

µJφ

4j

{
H ′(2)

n (χρ0)J ′n(χρ)+
n

χρ
Jn(χρ)

n

χρ0
H ′(2)

n (χρ0)
}

(17)

Therefore, the corresponding secondary magnetic vector potentials are

Ã1
ρn(ρ, h) = −µJφ

4

{
en

n

χρ
H(2)

n (χρ) + fnH ′(2)
n (χρ)

}
(18)

Ã1
φn(ρ, h) =

µJφ

4j

{
gnH ′(2)

n (χρ) + hn
n

χρ
H(2)

n (χρ)
}

(19)
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A similar procedure has been adopted as mentioned above in ρ-directed
dipole case for determining the unknown coefficients en, fn, gn, hn, in
this case as well . The application of boundary conditions (10) and
(11) yield the following result

en = −
n
ρo

H
(2)
n (χρo)

{
χa2J ′′′n (χa) + aJ ′′n(χa)+

(
k2a2−1

χ

)
J ′n(χa)

}

χ2a2H
′′′(2)
n (χa) + χaH

′′(2)
n (χa)+

(
k2a2 − 1

)
H
′(2)
n (χa)

(20)

fn = −
nH

′(2)
n (χρo)

{
aχJ ′′n(χa)− J ′n(χa)+

(
k2a
χ

)
Jn(χa)

}

naχH
′′(2)
n (χa)− nH

′(2)
n (χa)+

(
nk2a

χ

)
H

(2)
n (χa)

(21)

gn = −
H
′(2)
n (χρo)

{
χaJ ′′n(χa)− J ′n(χa)

}

χaH
(2)′′
n (χa)−H

′(2)
n (χa)

(22)

hn = −
n2

ρo
H
′(2)
n (χρo)

{
1
χJ ′n(χa)−

(
2

χ2a

)
Jn(χa)

}

nH
′(2)
n (χa)−

(
2n
χa

)
H

(2)
n (χa)

(23)

The magnetic vector potentials for two regions in case of φ-directed
dipole can be obtained analogous to that of ρ-directed dipole. The
results are as follows
Case 1 (ρ < ρo)

Aρ=
−µoJφ

8π

∞∑
n=−∞

exp
(
jn(φ−φo)

)∫ ∞

−∞

{ n

ρχ
Jn(χρ)H ′(2)

n (χρo)+
n

χρo

×H(2)
n (χρo)J ′n(χρ)+fn

n

χρ
H(2)(χρ)+enH ′(2)

n (χρ)
}

exp
(
−jh(z−zo)

)
dh

Aφ =
−jµoJφ

8π

∞∑
n=−∞

exp
(
jn(φ−φo)

)∫ ∞

−∞

{
J ′n(χρ)H ′(2)

n (χρo)+
n

χρo
H ′(2)

n (χρo)

× n

χρ
Jn(χρ) + gnH ′(2)(χρ) + hn

n

χρ
H(2)

n (χρ)
}

exp
(
− jh(z − zo)

)
dh

Case 2 (ρ > ρo)

Aρ=
−µoJφ

8π

∞∑
n=−∞

exp
(
jn(φ−φo)

)∫ ∞

−∞

{ n

ρoχ
Jn(χρo)H ′(2)

n (χρ)+
n

χρ
H(2)

n (χρ)

×J ′n(χρo)+fn
n

χρ
H(2)(χρ)+enH ′(2)

n (χρ)
}

exp
(
− jh(z−zo)

)
dh

Aφ =
−jµoJφ

8π

∞∑
n=−∞

exp
(
jn(φ−φo)

)∫ ∞

−∞

{
J ′n(χρo)H ′(2)

n (χρ)+
n

χρo
H ′(2)

n (χρ)
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× n

χρ
Jn(χρo)+gnH ′(2)

n (χρ)+hn
n

χρ
H(2)

n (χρ)
}

exp
(
− jh(z−zo)

)
dh

2.3. z-directed Dipole Magnetic Vector Potential Analysis

In the case of z-directed electric dipole, the primary vector
potential [18, 19] and the corresponding secondary magnetic vector
potential can be given as

Ã(0)
zn (ρ, h) =

µ0Jz

4j
Jn(χρ)H(2)

n (χρ0) (24)

Ã(1)
zn (ρ, h) =

µ0Jz

4j
qnH(2)

n (χρ) (25)

where qn is the unknown scattering coefficient and is obtained using
procedure as mentioned above for ρ and φ-directed dipole cases. The
application of the boundary conditions (10)–(11) leads to the following
unknown scattering coefficient

qn = −J ′n(χa)H(2)
n (χρo)

H
′(2)
n (χa)

(26)

Therefore using (3), the total magnetic vector potential (primary +
secondary) can be written as
Case 1 (ρ < ρo)

Az =
µoJz

8πj

∞∑
n=−∞

exp
(
jn(φ−φo)

)∫ ∞

−∞

{
Jn(χρ)H(2)

n (χρo)+qnH(2)
n (χρ)

}

× exp
(
− jh(z − zo)

)
dh

Case 2 (ρ > ρo)

Az =
µoJz

8πj

∞∑
n=−∞

exp
(
jn(φ−φo)

)∫ ∞

−∞

{
Jn(χρo)H(2)

n (χρ)+qnH(2)
n (χρ)

}

× exp
(
− jh(z − zo)

)
dh

2.4. Far-zone Magnetic Vector Potential Analysis

For far-zone magnetic vector potential the integral of type∫∞
−∞(.) exp(−jh(z − zo))dh has been solved using steepest descent

method following the approach in [18, 19]. In the analysis asymptotic
expression of Hankel function is used with transformation

ρ = r sin θ, z − zo = r cos θ, χ = k sin θ,

h = k cos θ and H ′(2)
n(χρ) ' −jH(2)

n (χρ)
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2.4.1. ρ-directed Dipole

Aρ =
µJρ

8πj

∞∑
n=−∞

exp
(
jn(φ−φo)

)∫ ∞

−∞

{
anH ′(2)

n (χρ)+bn
n

χρ
H(2)

n (χρ)
}

× exp
(
− jh(z − zo)

)
dh

' −jµoJρ exp(−jkr)
4πr

∞∑
n=−∞

an(ka sin θ) exp
(
jn(φ−φo)+

jnπ

2

)

Aφ =
µJρ

8π

∞∑
n=−∞

exp
(
jn(φ−φo)

)∫ ∞

−∞

{
cnH ′(2)(χρ)+dn

n

χρ
H(2)

n (χρ)
}

× exp (−jh(z − zo)) dh

'µoJρ exp(−jkr)
4πr

∞∑
n=−∞

cn(ka sin θ) exp
(
jn(φ−φo)+

jnπ

2

)

2.4.2. φ-directed Dipole

Aρ =
−µoJφ

8π

∞∑
n=−∞

exp
(
jn(φ−φo)

)∫ ∞

−∞

{
fn

n

χρ
H(2)(χρ)+enH ′(2)

n (χρ)
}

× exp
(
− jh(z − zo)

)
dh

' jµoJφ exp(−jkr)
4πr

∞∑
n=−∞

en(ka sin θ) exp
(
jn(φ− φo) +

jnπ

2

)

Aφ =
−jµoJφ

8π

∞∑
n=−∞

exp
(
jn(φ−φo)

)∫ ∞

−∞

{
gnH ′(2)(χρ)+hn

n

χρ
H(2)

n (χρ)
}

× exp
(
− jh(z − zo)

)
dh

' jµoJφ exp(−jkr)
4πr

∞∑
n=−∞

gn(ka sin θ) exp
(
jn(φ− φo) +

jnπ

2

)
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2.4.3. z-directed Dipole

Az =
µoJz

8πj

∞∑
n=−∞

exp
(
jn(φ−φo)

)∫ ∞

−∞
qnH(2)

n (χρo) exp
(
−jh(z−zo)

)
dh

' µoJz exp(−jkr)
4πr

∞∑
n=−∞

qn(ka sin θ) exp
(
jn(φ− φo) +

jnπ

2

)

3. NUMERICAL RESULTS AND CONCLUDING
REMARKS

In this section numerical results are depicted through Figures 2 to 6.
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Figure 2. ρ-directed electric dipole with ka = 5, θ = 60 and φo = 0.
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Figure 3. ρ-directed electric dipole with ka = 5, θ = 60 and φo = 0.
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Figure 4. φ-directed electric dipole with ka = 5, θ = 60 and φo = 0.
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Figure 5. φ-directed electric dipole with ka = 5, θ = 60 and φo = 0.
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Figure 6. z-directed electric dipole with ka = 5, θ = 60 and φo = 0.
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The expressions for magnetic vector potential are simplified in the
far-zone region using steepest descent method and applying asymptotic
approximations on cylindrical wave functions. Potentials are plotted
by taking ka = 5, φ0 = 0 and θ = 60. It has been observed from
numerical results that when dipole is ρ-directed or z-directed, behavior
of DB and PEC cylindrical boundaries is similar at φ = 180, i.e., their
null and maxima correspond to same locations. On the other hand,
when the dipole is φ-directed the behaviors are exactly opposite to each
other, i.e., at φ = 180 null of PEC cylindrical interface correspond to
the maxima of DB cylindrical interface and vice versa. Moreover, when
dipole is z-directed, magnetic vector potential for both DB and PEC
cylindrical boundaries has some finite values at φ = 0 and 360 whilst
for φ-directed electric dipole shows opposite behavior. Furthermore, it
is observed from numerical results, when electric dipole is ρ-directed,
DB and PEC cylindrical boundaries have some finite and null values of
magnetic potential at φ = 0 and 360, respectively. These new results
may have potential applications in antenna design.
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