Vol. 126
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-03-08
Provisos for Classic Linear Oscillator Design Methods. New Linear Oscillator Design Based on the Ndf/RRT
By
Progress In Electromagnetics Research, Vol. 126, 17-48, 2012
Abstract
In this paper, the classic oscillator design methods are reviewed, and their strengths and weaknesses are shown. Provisos for avoiding the misuse of classic methods are also proposed. If the required provisos are satisfied, the solutions provided by the classic methods (oscillator start-up linear approximation) will be correct. The provisos verification needs to use the NDF (Network Determinant Function). The use of the NDF or the most suitable RRT (Return Relation Transponse), which is directly related to the NDF, as a tool to analyze oscillators leads to a new oscillator design method. The RRT is the "true" loop-gain of oscillators. The use of the new method is demonstrated with examples. Finally, a comparison of NDF/RRT results with the HB (Harmonic Balance) simulation and practical implementation measurements prove the universal use of the new methods.
Citation
Jose Luis Jiménez-Martín, Vicente Gonzalez-Posadas, Ángel Parra-Cerrada, Daniel Segovia-Vargas, and Luis Enrique Garcia-Munoz, "Provisos for Classic Linear Oscillator Design Methods. New Linear Oscillator Design Based on the Ndf/RRT," Progress In Electromagnetics Research, Vol. 126, 17-48, 2012.
doi:10.2528/PIER11112308
References

1. Randall, M. and M. J. Hock, "General oscillator characterization using linear open-loop S-parameters," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 6, 1094-1100, 2001.
doi:10.1109/22.925496

2. Rhea, R. W., Discrete Oscillator Design: Linear, Nonlinear, Transient, and Noise Domains, Artech House Publishers, New York, 2010.

3. Vendelin, G., A. M. Pavio, and U. L. Rohde, Microwave Circuit Design Using Linear and Nonlinear Techniques, John Wiley & Sons, New York, 1990.

4. Maas, S. A., Nonlinear Microwave and RF Circuits, 2nd Ed., Artech House, Norwood, 2003.

5. Surez, A. and S. Qure, Stability Analysis of Nonlinear Microwave Circuits, Artech House, Norwood, 2003.

6. Khanna, A. P. and J. Obregon, "Microwave oscillator analysis," IEEE Transactions on Microwave Theory and Techniques, Vol. 29, No. 6, 606-607, 1981.
doi:10.1109/TMTT.1981.1130401

7. Alechno, S., "Analysis method characterizes microwave oscillators," Microwaves RF, Vol. 36, No. 11, 82-86, 1997.

8. Alechno, S., "Advancing the analysis of microwave oscillators," Microwaves RF, Vol. 39, No. 6, 55-67, 2000.

9. Rohde, U. L., Microwave and Wireless Synthesizers: Theory and Design, John Wiley & Sons, New York, 1997.

10. Jimnez, J. L. and F. Ortega, "Accurate linear oscillator analysis and design," Microwave Journal, Vol. 39, No. 6, 22-37, June 1996.

11. Basawapatna, G. R. and R. B. Stancli, "A unified approach to the design of wide-band microwave solid state oscillators," IEEE Transactions on Microwave Theory and Techniques, Vol. 27, No. 5, 379-385, 1979.
doi:10.1109/TMTT.1979.1129636

12. Esdale, D. J. and M. J. Howes, "A reflection coefficient approach to the design of one port negative impedance oscillators," IEEE Transactions on Microwave Theory and Techniques, Vol. 29, No. 8, 770-776, 1981.
doi:10.1109/TMTT.1981.1130445

13. Alechno, S., "The virtual ground in oscillator design. A practical example," Applied Microwave & Wireless, Vol. 39, No. 7, 44-53, 1999.

14. Kurokawa, K. K., "Some basic characteristics of broadband negative resistance oscillator circuits," Bell Systm. Tech. J., Vol. 48, No. 6, 1937-1955, 1969.

15. Gonzalez-Posadas, V., J. L. Jimenez-Martin, A. Parra-Cerrada, D. Segovia-Vargas, and L. E. Garcia-Muoz, "Oscillator accurate linear analysis and design. Classic linear methods review and comments," Progress In Electromagnetics Research, Vol. 118, 89-116, 2011.
doi:10.2528/PIER11041403

16. Jackson, R. W., "Criteria for the on set of oscillation in microwave circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 40, No. 3, 566-569, 1992.
doi:10.1109/22.121734

17. Platzker, A., W. Struble, and K. Hetzler, "Instabilities diagnosis and the role of K in microwave circuits," IEEE MTT-S IN. Microwave Symposium Digest, 185-188, 1993.

18. Platzker, A. and W. Struble, "Rigorous determination of the stability of linear N-node circuits from network determinants and the appropriate role of the stability factor K of their reduced two ports," Int. Integr. Nonlinear Microw. Millimeter Wave Circuits Workshop, 93-107.

19. Jackson, R. W., "Rollett proviso in the stability of linear microwave circuits-a tutorial," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 3, 993-1000, 2006.
doi:10.1109/TMTT.2006.869719

20. Rhea, R. W. and B. Clausen, "Recent trends in oscillator design," Microwave Journal, 22-24, 2004.

21. Rhea, R. W., "A new class of oscillators," IEEE Microwave Magazine, Vol. 2, No. 2, 72-83, 2004.
doi:10.1109/MMW.2004.1306839

22. Nguyen, N. and R. Meyer, "Start-up and frequency stability in high-frequency oscillators," IEEE Journal of Solid-State Circuits, Vol. 27, No. 5, May 1992.
doi:10.1109/4.133172

23. Rollett, J. M., "Stability and power-gain invariants of linear twoports," IRE Trans. Circuit Theory, Vol. 9, 29-32, March 1962.

24. Edwards, M. L. and J. H. Sinsky, "A new criterion for linear 2-port stability using a single geometrically derived parameter," IEEE Transactions on Microwave Theory and Techniques, Vol. 40, 2303-2311, 1992.
doi:10.1109/22.179894

25. Edwards, M. L., S. Cheng, and J. H. Sinsky, "A deterministic approach for designing conditionally stable amplifiers," IEEE Transactions on Microwave Theory and Techniques, Vol. 43, 1567-1575, 1995.
doi:10.1109/22.392916

26. Bode, H. W., Network Analysis and Feedback Amplifier Design, Van Nostrand Co. Inc., New York, 1945.

27. Leeson, D. B., "A simple model of feedback oscillator noise spectrum," Proceeding of the IEEE, 329-330, 1966.
doi:10.1109/PROC.1966.4682

28. Everard, J. K. A., "A review of low noise oscillator. Theory and design," Proceedings of the 1997 IEEE International Frequency Control Symposium, 909-918, 1997.

29. Jeremy, E., "Fundamentals of RF Circuit Design with Low Noise Oscillators," ISBN: 0-471-49793-2, Wiley, Dec. 2000, reprinted Oct. 2002.