Vol. 23
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-01-05
Stability and Dispersion Analysis for Three-Dimensional (3-d ) Leapfrog Adi-FDTD Method
By
Progress In Electromagnetics Research M, Vol. 23, 1-12, 2012
Abstract
Stability and dispersion analysis for the three-dimensional (3-D) leapfrog alternate direction implicit finite difference time domain (ADI-FDTD) method is presented in this paper. The leapfrog ADI-FDTD method is reformulated in the form similar to conventional explicit FDTD method by introducing two auxiliary variables. The auxiliary variables serve as perturbations of the main fields variables. The stability of the leapfrog ADI-FDTD method is analyzed using the Fourier method and the eigenvalues of the Fourier amplification matrix are obtained analytically to prove the unconditional stability of the leapfrog ADI-FDTD method. The dispersion relation of the leapfrog ADI-FDTD method is also presented.
Citation
Theng Huat Gan, and Eng Leong Tan, "Stability and Dispersion Analysis for Three-Dimensional (3-d ) Leapfrog Adi-FDTD Method," Progress In Electromagnetics Research M, Vol. 23, 1-12, 2012.
doi:10.2528/PIERM11111803
References

1. Zheng, F., Z. Chen, and J. Zhang, "Toward the development of a three-dimensional unconditionally stable finite-difference time-domain method," IEEE Trans. Microw. Theory Tech., Vol. 48, No. 9, 1550-1558, Sep. 2000.
doi:10.1109/22.869007

2. Namiki, T., "3-D ADI-FDTD method - Unconditionally stable time-domain algorithm for solving full vector Maxwell's equations," IEEE Trans. Microw. Theory Tech., Vol. 48, No. 10, 1743-1748, Oct. 2000.
doi:10.1109/22.873904

3. Tan, E. L., "Fundamental schemes for effcient unconditionally stable implicit finite-difference time-domain methods," IEEE Trans. Antennas Propagat., Vol. 56, No. 1, 170-177, Jan. 2008.
doi:10.1109/TAP.2007.913089

4. Heh, D. Y. and E. L. Tan, "Unified effcient fundamental ADI-FDTD schemes for lossy media," Progress In Electromagnetics Research B, Vol. 32, 217-242, 2011.
doi:10.2528/PIERB11051801

5. Tay, W. C, D. Y. Heh, and E. L. Tan, "GPU-accelerated funda- mental ADI-FDTD with complex frequency shifted convolutional perfectly matched layer," Progress In Electromagnetics Research M, Vol. 14, 177-192, 2010.
doi:10.2528/PIERM10090605

6. Fu, W. and E. L. Tan, "Development of split-step FDTD method with higher-order spatial accuracy," Electron. Lett., Vol. 40, No. 20, 1252-1254, Sep. 2004.
doi:10.1049/el:20046040

7. Kong, Y. -D. and Q. -X. Chu, "Reduction of numerical dispersion of the six-stages split-step unconditionally-stable FDTD method with controlling parameters," Progress In Electromagnetics Research, Vol. 122, 175-196, 2012.
doi:10.2528/PIER11082512

8. Shibayama, J., M. Muraki, J. Yamauchi, and H. Nakano, "FDTD algorithm based on locally one-dimensional scheme," Electron. Lett., Vol. 41, No. 19, 1046-1047, Sep. 2005.
doi:10.1049/el:20052381

9. Tan, E. L., "Unconditionally stable LOD-FDTD method for 3-D Maxwell's equations," IEEE Microw. Wireless Comp. Lett., Vol. 17, No. 2, 85-87, Feb. 2007.
doi:10.1109/LMWC.2006.890166

10. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propagat., Vol. 14, No. 3, 302-307, May 1966.
doi:10.1109/TAP.1966.1138693

11. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd Edition, Artech House, Boston, MA, 2005.

12. Dai, J., Z. Chen, D. Su, and X. Zhao, "Stability analysis and improvement of the conformal ADI-FDTD methods," IEEE Trans. Antennas Propagat., Vol. 59, No. 6, 2248-258, Jun. 2011.
doi:10.1109/TAP.2011.2143686

13. Wang, B. Z., Y.Wang, W. Yu, and R. Mittra, "A Hybrid 2-D ADI- FDTD subgridding scheme for modeling on-chip interconnects," IEEE Trans. Adv. Packag., Vol. 24, No. 4, 528-533, Nov. 2001.

14. Chevalier, M. W., R. J. Luebbers, and V. P. Cable, "FDTD local grid with material traverse," IEEE Trans. Antennas Propagat., Vol. 45, No. 3, 411-421, Mar. 1997.
doi:10.1109/8.558656

15. Cooke, S. J., M. Botton, T. M. Antonsen, and B. Levush, "A leapfrog formulation of the 3D ADI-FDTD algorithm," Int. J. Numer. Model, Vol. 22, No. 2, 187-200, 2009.
doi:10.1002/jnm.707

16. Jolani, F., Y. Yu, and Z. Chen, "Effcient modeling of open structures using nonuniform Leapfrog ADI-FDTD," IEEE Antennas Wireless Propag. Lett., Vol. 10, 561-564, 2011.
doi:10.1109/LAWP.2011.2158380

17. Yang, S., Y. Yu, Z. Chen, and W. Yin, "The convolutional perfectly matched layer (CPML) for the leapfrog ADI-FDTD method," 2011 IEEE MTT-S International Microwave Sympo- sium Digest, 2011.

18. Tay, W. C. and E. L. Tan, "Implementations of PMC and PEC boundary conditions for effcient fundamental ADI- and LOD- FDTD," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 4, 565-573, 2010.

19. Tan, E. L., "Effcient algorithms for Crank-Nicolson based finite-difference time-domain methods," IEEE Trans. Microwave Theory Tech., Vol. 56, No. 2, 408-413, Feb. 2008.
doi:10.1109/TMTT.2007.914641

20. Fu, W. and E. L. Tan, "Stability and dispersion analysis for higher order 3-D ADI-FDTD method," IEEE Trans. Antennas Propagat., Vol. 53, No. 11, 3691-3696, Nov. 2005.

21. Heh, D. Y. and E. L. Tan, "Dispersion analysis of FDTD schemes for doubly lossy media," Progress In Electromagnetics Research B, Vol. 17, 327-342, 2009.
doi:10.2528/PIERB09082802